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Abstract

This paper examines how informal and formal networks shape performance in
the venture capital (VC) industry. Using data on all U.S.-based VC investments from
1990 to 2009, supplemented with partner-level educational and employment histo-
ries from LinkedIn, I develop a structural framework that connects three types of net-
works: coinvestment ties, historical affiliations, and latent social connections. In the
baselinemodel, VC performance is a function of peer performance, capturing network
spillovers through a micro-founded production function. To address endogeneity in
network formation, I extend the model using a two-step instrumental variables strat-
egy that leverages variation in past professional and alumni ties. Finally, I introduce an
endogenous network formation model in which VCs strategically choose connections
based on expected peer quality, allowing for the recovery of latent social networks
from equilibrium outcomes. Across specifications, better-connected VCs exhibit sig-
nificantly higher exit rates. Estimates from the endogenous model suggest that a 1%
increase in social connectedness raises a VC’s exit rate by 0.2 percentage points, while a
1% improvement in peer performance leads to a 0.74 percentage point increase in con-
nection intensity. These findings highlight the economic value of informal relation-
ships and offer new empirical tools for measuring network effects in private capital
markets.
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1 Introduction
The venture capital (VC) industry plays a central role in financing innovation and en-
trepreneurship. Yet access to deals, capital, and follow-on support is often governed
not just by investment strategy or firm performance, but by personal relationships built
through shared education, early career ties, or social circles (Da Rin, Hellmann, and Puri
2013). While it iswell-documented thatVCfirms frequently collaborate extensively through
coinvestment (syndication), the informal ties that underlie these partnerships are far less
visible and poorly understood. These social connections may facilitate trust, information
sharing, and access to deals, but they may also entrench a small group of insiders (“the
old boy network”) and restrict entry into an already concentrated industry.1 Understand-
ing how these relationships shape investment outcomes is critical to evaluating both the
efficiency and equity of the VC ecosystem (Hochberg, Ljungqvist, and Lu 2010; Ewens
2023).

This paper studies the causal impact of VC networks on fund performance, with a
particular focus on the informal, personal connections that traditional data sources over-
look. While prior research has found that better-connectedVCs perform better (Hochberg,
Ljungqvist, and Lu 2007; Tian 2011), it remains difficult to determine whether networks
drive performance or simply reflect it (Da Rin, Hellmann, and Puri 2013). Coinvestment-
basedmeasures capture only formal, observed relationships and cannot account for latent
social ties. Moreover, existing empirical approaches often rely on coarse measures of net-
work centrality without a clear economic interpretation. To address these challenges, I
develop a structural network framework that connects three networks and estimate how
VC performance improves through these connections: (1) formal coinvestment ties formed
through joint startup funding; (2) historical (alumni and professional) connections based
on shared education and prior employment; and (3) informal social networks that emerge
from these past affiliations and shape ongoing collaboration and information flow.2 By

1See, for example, https://www.forbes.com/sites/oliversmith/2019/02/03/new-industry-repor
t-exposes-british-vc-industry-as-an-old-boys-club.

2The three networks refer to different layers of relationships in the VC industry. (1) The coinvestment
network consists of formal ties established when VC firms jointly invest in startups, a common practice that
connects nearly all major VCs in the U.S. market (Lerner 1994; Brander, Amit, and Antweiler 2002; Lerner,
Shane, and Tsai 2003; Hochberg, Ljungqvist, and Lu 2007). (2) The historical network captures long-standing
connections between VC partners formed through shared educational and professional backgrounds, such
as attending the same universities or working at the same firms before entering venture capital (Rider 2012;
Shue 2013; Huang 2022). See also https://news.crunchbase.com/data/venture-capitalists-go-col
lege/. (3) The social network reflects informal and personal relationships among VC partners built upon
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leveraging quasi-exogenous variation in VC partners’ past affiliations and endogenizing
network formation, I identify the causal effects of social connections on investment success
and recover the structure of informal networks that shape outcomes in venture capital.

At the heart of this paper is a simple intuition: in a networked environment, a VC’s
productivity depends not only on its own effort and capabilities, but also on the pro-
ductivity of its connected peers. This interdependence arises because venture capital is
an information-intensive business where relationships facilitate the flow of soft informa-
tion, expertise, and reputational signals. Networks allow VCs to reduce uncertainty and
improve decision-making at two critical stages of the investment process: screening and
value creation. During screening, VCs benefit from shared signals, referrals, and joint
due diligence with trusted peers, which improves selection quality and mitigates adverse
selection risk. In the post-investment phase, networks expand the resources available to
portfolio companies such as strategic advice, hiring support, and operational contacts and
increase the likelihood of securing follow-on funding. Moreover, in the two-sided match-
ing process between startups and investors, networks serve as a signal of reputation and
credibility. Well-connected VCs are more attractive to high-quality entrepreneurs, not
only because of their resources but also because their connections reflectmarket validation
(Sørensen 2007; Nahata 2008). The structural model formalizes this mechanism by allow-
ing a VC’s performance to depend on the expected performance of its network neighbors,
capturing how information and influence propagate through the network to shape invest-
ment outcomes.

The structural network model presented in Section 3 builds on the framework devel-
oped byBattaglini, Sciabolazza, andPatacchini (2020) andBattaglini, Patacchini, andRain-
one (2021), and is implemented in two stages. The first stage, described in Section 3.1,
introduces a baseline model in which VCs are endowed with a fixed set of connections,
and performance arises through information diffusion across the network. At its core is a
simple production function: a VC’s performance depends on both its own effort and the
performance of its connected peers. This specification captures the idea that connected
VCs share information and thereby improve each other’s outcomes. A key innovation rela-
tive to previous VC network literature is the incorporation of a micro-foundedmechanism
linking networks to performance. Since effort is chosen in anticipation of peer outcomes,
and performance is itself shaped by the network, the model yields a system of interdepen-

these historical ties that facilitate mutual support and information exchange, even in the absence of direct
coinvestment activity.
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dent equations in which all VCs’ performances are jointly determined. Under standard
regularity conditions, the system admits a unique equilibrium. This formulation allows
for a direct quantification of social spillovers and provides a structural interpretation of
performance as an equilibrium-based measure of network centrality.

To address the endogeneity of network formation, I extend the model to allow for en-
dogenous link choice among VCs. In this formulation, detailed in Section 3.2, VCs select
their social connections in a first stage based on rational expectations about the equilib-
rium performance of their peers. The model is structured as a two-period game: in period
one, agents choose links in anticipation of future benefits; in period two, they select effort
levels given the realized network. Connection costs depend on observed compatibility,
proxied by shared professional and educational history as well as characteristic similarity.
Agents internalize both the informational benefits and formation costs of each connection,
resulting in an equilibrium network shaped by strategic behavior.

This structure allows themodel to jointly identify themagnitude of peer spillovers and
the elasticity of link formation. In doing so, it recovers latent social ties, informal relation-
ships not directly observed in coinvestment data, by leveraging variation in performance,
historical affiliations, and cross-sectional differences in characteristics. The intuition is
straightforward: if two VCs are highly similar, share extensive past connections, and both
perform well, a strong underlying social link is likely; if performance diverges despite
those similarities, the connection is likely weaker. Crucially, this approach does not rely
on observed coinvestment data, allowing for a conceptual and empirical distinction be-
tween formal investment ties and informal social networks.

The results in Section 5 follow the structure of the modeling framework. In the base-
line model, performance is systematically related to the performance of a VC’s connected
peers. A 10 percentage point increase in a coinvestor’s exit rate is associated with a 0.1
percentage point increase in the VC’s own exit rate. The magnitude of this estimate is
comparable to the reduced-form regression relating performance to centrality measures.
This peer effect is robust across alternative specifications that use professional and alumni
networks in place of coinvestment ties, suggesting that informal connections can carry
similar informational value and play a comparable role in driving performance.

The baselinemodel is then extended using a two-step IV approach. This method lever-
ages professional and alumni networks, constructed from LinkedIn profiles of VC part-
ners, as sources of exogenous variation. These historical affiliations serve as proxies for
prior relationships that are unlikely to be influenced by current fund performance. In
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the first step, coinvestment links are explained using shared educational and professional
backgrounds as well as characteristic similarity, under the assumption that VCs tend to
partner with peers who are similar to themselves. The residuals from this link formation
model capture unobserved factors affecting connection decisions. In the second step, these
residuals are used as controls in themain performance equation to address potential selec-
tion and simultaneity. Results from this specification show that network spillovers remain
positive and statistically significant, with magnitudes comparable to those in the baseline
model. Moreover, the insignificance of the residual term suggests that professional and
alumni networks account for much of the unobserved heterogeneity in network forma-
tion. These findings reinforce the view that long-standing social ties play a meaningful
role in structuring VC networks and shaping fund outcomes.

Building on the baseline and IV models, the final specification allows for endogenous
network formation, where VCs strategically select their connections in anticipation of per-
formance gains. This approach jointly estimates both the impact of social ties on outcomes
and the responsiveness of network formation to peer quality. The results show that a 1%
increase in a VC’s social connectedness, whether through forming new links or strength-
ening existing ones, is associated with a 0.2 percentage point increase in its own exit rate.
At the same time, a 1% increase in a peer’s performance leads to a 0.74 percentage point
increase in connection intensity, indicating that VCs actively reconfigure their networks
in response to the quality of their peers. Unlike the previous specifications, which rely
on observed coinvestment or historical affiliations, this model recovers the latent social
network directly from performance outcomes, past ties, and characteristic similarity. The
recovered network shares many features with the coinvestment network but also reveals
distinct patterns of informal connectivity. These differences suggest that personal and un-
observed relationships play an important and independent role in shaping performance
in venture capital.

The remainder of this article is organized as follows. Section 2 describes the data and
establishes reduced-form evidence consistent with Hochberg, Ljungqvist, and Lu (2007).
Section 3 presents the structural network model following Battaglini, Sciabolazza, and
Patacchini (2020) and Battaglini, Patacchini, and Rainone (2021) and Section 4 presents
the details of the estimation. Section 5 presents the estimation results of the structural
models. Section 6 concludes.
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1.1 Related literature

This paper contributes to three strands of literature. First, it advances research on the de-
terminants of venture capital performance. Unlike traditional asset classes, VC investing
requires intensive screening, monitoring, and value-added engagement under high un-
certainty. A growing literature highlights the importance of partner characteristics, fund
size, stage specialization, and experience in shaping returns (Kaplan and Schoar 2005;
Cochrane 2005). Another distinctive feature of the VC industry is syndication. These
coinvestment partnerships serve not only financial purposes but also function as chan-
nels for information exchange and strategic alignment. Hochberg, Ljungqvist, and Lu
(2007) show that centrality in the coinvestment network is positively associated with fund
success, suggesting that better-connected VCs benefit from enhanced deal flow and infor-
mation. Similarly, Sørensen (2007) models VC-startup matching as a two-sided process,
emphasizing how relationships shape selection. However, most of this literature relies on
reduced-form methods and observable investment ties, which limit causal interpretation
and overlook the role of latent social connections.

This paper provides the first structural estimation of VC networks, capturing how
performance is endogenously shaped by the productivity of peers. The model formal-
izes the information-based mechanisms emphasized in the literature, both screening and
value-adding, and extends earlier insights on syndication and matching (Sørensen 2007;
Hochberg, Ljungqvist, and Lu 2007; Sorenson and Stuart 2001; Sorenson and Stuart 2008;
Das, Jo, and Kim 2011). Crucially, the structural framework identifies both how networks
influence performance and how performance, in turn, affects network formation. This
dual direction of influence is often missing from prior work, which typically focuses on
either the value of network position (Sorenson and Stuart 2001; Sorenson and Stuart 2008)
or the determinants of link formation (Lerner 1994; Du 2016; Bubna, Das, and Prabhala
2020). By modeling both sides simultaneously, this paper offers a more comprehensive
view of how networks shape outcomes in venture capital.

Second, this paper is related to a broader literature on social capital and informal net-
works in finance. In public markets, personal connections have been shown to affect trad-
ing patterns, capital flows, and corporate decisions. Cohen, Frazzini, and Malloy (2008)
document that mutual fundmanagers with shared educational ties exhibit similar trading
behavior, while Engelberg, Gao, and Parsons (2012) show that social relationships influ-
ence capital allocation decisions among fund managers. In the corporate sphere, Shue
(2013) finds that CEO networks, particularly those based on educational background, af-
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fect corporate policy choices. These studies highlight the role of informal relationships
in shaping economic behavior, even in relatively transparent markets. In contrast, ven-
ture capital is a private, opaque market in which trust and repeated interaction are even
more critical, yet the role of informal social networks remains underexplored. This paper
extends the logic of social capital into the VC context by quantifying the causal effects of
unobserved social ties not captured by coinvestment data on fund performance.

Third, this paper builds on structural approaches to modeling networks and peer ef-
fects in economics and finance (Allen and Babus 2009). Foundational work by Acemoglu
et al. (2012) and Elliott, Golub, and Jackson (2014) models how network-based spillovers
contribute to aggregate outcomes and systemic risk. In terms of empirical implementa-
tions (Graham 2020), More recent contributions by Battaglini, Sciabolazza, and Patacchini
(2020), Battaglini, Patacchini, and Rainone (2021), and Lewbel, Qu, and Tang (2023) de-
velop structural frameworks that allow for endogenous peer effects and link formation. I
adapt this approach to the venture capital setting, estimating both how performance de-
pends on peers and how relationships are formed in equilibrium. A key innovation is the
use of historical biographical data (shared education and prior employment) to instru-
ment for unobserved social ties. This enables the recovery of latent social networks and
the identification of their causal effect on performance. Despite widespread belief in their
importance, such informal networks remain largely unmeasured in the VC literature and
are rarely incorporated into models of financial intermediation.

2 Data Description

2.1 VC data

The VC data covers all recorded deal flows involving U.S.-based venture capital firms be-
tween 1990 and 2009. The cutoff year of 2009 is selected to ensure that the performance of
each VC fund can be meaningfully assessed, given the typical life cycle of a VC fund is ap-
proximately ten years. Each funding round involves a target company and a syndicate of
VCs, although the composition of the syndicate may change across rounds. Startups may
receive multiple rounds of financing prior to an exit, which is classified as either an initial
public offering (IPO), an acquisition by another firm, or a failure. Exit dates and modes
are observed for completed cases. For firms still listed as active, a company is assumed
to have failed if it has not received a new round of financing within the past five years,
consistent with evidence that the operational life cycle of most startups does not exceed a
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decade.

The sample is restricted to traditional VC firms, defined as small partnerships focused
exclusively on early-stage investing. Institutions such as investment banks, large corporate
investors, and healthcare companies are excluded due to their scale and diversified oper-
ations, which obscure meaningful identification of inter-firm connections. Furthermore,
the analysis includes only those VC firms with at least one partner who has a publicly
accessible LinkedIn profile, as professional and alumni networks constructed from these
data serve as key sources of exogenous variation. The final sample comprises 15,777 fund-
ing rounds involving 670 VC firms. Summary statistics are reported in Table 1.

VC performance

Followingprior studies (Das, Jo, andKim2011; Du 2016; Lindsey 2008; Hochberg, Ljungqvist,
and Lu 2007), VC performance is defined as the proportion of a firm’s portfolio companies
that have successfully exited the market through either an initial public offering (IPO) or
an acquisition. Throughout the paper, the terms ”exit rate” and ”VC performance” are
used interchangeably. While direct data on fund-level returns would provide a more pre-
cise measure of financial performance, such information is generally unavailable due to
the absence of regulatory disclosure requirements for private VC firms. Despite this lim-
itation, exit rate serves as a credible proxy, as successful exits are a key determinant of
realized returns in the industry. Moreover, exit rate is bounded between zero and one,
which facilitates model estimation and improves numerical stability. Summary statistics
on VC exit rates are reported in Table 1.

Coinvestment networks

The coinvestment network is constructed using observed VC deal activity. For each round
of funding, the data identify all participating VCs. The adjacencymatrix G is defined such
that for any pair of VCs 𝑖 and 𝑗, the element 𝑔𝑖 𝑗 records the total number of coinvestments
between them over the observed period. This formulation results in a weighted network,
where 𝑔𝑖 𝑗 reflects the intensity or strength of the connection. By convention, self-links are
excluded, so 𝑔𝑖𝑖 = 0 for all 𝑖. For empirical implementation, two alternative measures of
connection intensity are also considered: a binary indicator equal to one if 𝑖 and 𝑗 have
ever coinvested, and a log-transformed version of the raw coinvestment count. Table 2
reports summary statistics for the coinvestment network. The unit of observation is an
ordered VC pair, yielding 𝑛(𝑛 − 1) dyads in total for 𝑛 VCs in the sample.
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Table 1: Summary statistics of VC firms

N Mean SD Min Max
No. rounds 6713 25.38 81.87 1 2373
No. startups 6713 13.80 37.39 1 989
Experience (years) 6713 6.35 7.66 0.00 39.23
No. coinvestments 6713 82.23 272.02 1 8075
No. coinvestors 6713 35.25 72.59 1 1327
Performance

No. IPOs 6713 1.69 7.24 0.00 186.00
No. acquisitions 6713 5.09 15.87 0.00 375.00
No. write-offs 6713 4.29 10.91 0.00 285.00
No. private companies 6713 2.73 7.68 0.00 148.00
IPO rate 6713 0.082 0.19 0.00 1.00
Exit rate 6713 0.41 0.38 0.00 1.00

Attributes
Pct business & financial services 6713 0.19 0.28 0.00 1.00
Pct consumer goods & services 6713 0.13 0.24 0.00 1.00
Pct healthcare 6713 0.22 0.34 0.00 1.00
Pct information technology 6713 0.38 0.36 0.00 1.00
Pct female 6713 0.022 0.11 0.00 1.00
Pct Asian 6713 0.023 0.13 0.00 1.00

Centrality
Degree 6713 35.25 72.59 1.00 1327.00
Betweenness 6713 0.00029 0.0014 0.00 0.059
Harmonic 6713 0.34 0.068 0.00015 0.57
Eigenvector 6713 0.039 0.081 0.00 1.00

Notes: Summary statistics of VC characteristics based on VC deals data.

Given the adjacency matrix G, four centrality measures are computed to characterize
the position of each VC within the coinvestment network, following standard concepts
from network and graph theory. Each VC is treated as a vertex, and each connection as an
edge. (1) The degree centrality of a vertex is defined as the number of distinct connections
it has to other vertices. Since the network is undirected in this application, no distinc-
tion is made between in-degree and out-degree.3 In the weighted version of the network,
degree centrality can also incorporate the number of coinvestments as edge weights. (2)
The betweenness centrality measures the number of shortest paths between all pairs of
nodes that pass through a given vertex. For each pair of VCs in the network, there exists

3SeeHochberg, Ljungqvist, and Lu (2007) for a discussion of directionality in the context of VCnetworks.
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at least one shortest path that minimizes the number of intermediate steps (or the total
edge weight in the case of weighted networks). Betweenness thus captures the extent to
which a VC serves as a bridge within the network. (3) The harmonic centrality, closely
related to closeness centrality, is the inverse of the average shortest path length from a
node to all other reachable nodes in the network. This metric reflects how easily a VC
can access the broader network of peers. (4) The eigenvector centrality measures a VC’s
influence based on the principle that connections to highly connected nodes contribute
more to one’s centrality. Formally, this metric is derived from the eigenvector associated
with the principal eigenvalue 𝜆 in the linear system 𝜆x = Gx. Summary statistics for these
centrality measures are reported in Table 1.

It is also useful to introduce the concept of alpha centrality (sometimes also named
after Katz 1953; Bonacich and Lloyd 2001), which will serve as a foundation for several
structural formulations discussed later. Alpha centrality generalizes eigenvector centrality
by incorporating external sources of influence. Formally, it is defined as the solution to the
linear system:

x = 𝛿Gx + 𝜺, (1)

where x is the centrality vector, G is the adjacency matrix, 𝜺 is a vector of exogenous influ-
ence, and 𝛿 determines the relative weight of endogenous network effects versus external
shocks. When 𝜺 is set to zero, this formulation reduces to eigenvector centrality. Alpha
centrality can also be interpreted as a generalized form of degree centrality, where the
influence of more distant nodes is discounted. The structure in equation (1) will reappear
in later sections with different behavioral and economic interpretations.

Covariates

Several VC-level characteristics are included as covariates in the analysis. These variables
are selected based on their potential influence on performance and their prominence in
the venture capital literature.

First, performance is expected to correlate with fund size and industry specialization.
Although direct observations of fund size are unavailable, two proxies are constructed:
the number of startups backed by a VC and the number of funding rounds in which the
VChas participated. Thesemeasures serve as reasonable indicators of investment capacity
under the assumption that larger firms typically engage in more deals.
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Table 2: Summary Statistics of Pairwise Connection Intensities

N Mean SD Min Max
Coinvestment, G

Having coinvested 45064369 0.01 0.07 0.00 1.00
No. coinvestments 236628 2.33 3.49 1.00 129.00
log(No. coinvestments) 236628 0.51 0.69 0.00 4.86

Professional connections, H𝑝
Having professional connections 45064369 0.00 0.04 0.00 1.00
No. professional connections 87758 23.28 657.18 1.00 88977.00
log(No. professional connections) 87758 0.70 1.17 0.00 11.40

Alumni connections, H𝑎
Having alumni connections 45064369 0.01 0.09 0.00 1.00
No. alumni connections 357024 9.92 113.69 1.00 20628.00
log(No. alumni connections) 357024 0.95 1.14 0.00 9.93

Notes: The unit of observation is a VC-VC pair. The number of coinvestments is calculated based on the
common funding round that both VCs participated in. Professional connections and alumni connections
are calculated at the individual level and aggregated at the VC level. For example, if partner A from VC 1
and partner B from VC 2 have both worked at the same company prior to joining their respective VCs, this
is one professional connection.

Second, VCs often concentrate their investments within one or a few sectors to lever-
age expertise and avoid the inefficiencies associated with over-diversification. Four major
sectors are identified in the data: business and financial services, consumer goods and
services, healthcare, and information technology.

Third, demographic composition is captured by two variables: the share of female
partners and the share of Asian partners within each VC firm. The venture capital indus-
try remains predominantly white andmale, making it important to understand the role of
gender and racial diversity in shaping outcomes. Gender and ethnicity are imputed using
first and last names extracted from LinkedIn profiles. The classification algorithm is con-
servative, resolving ambiguous cases in favor of male and non-Asian designations. The
analysis focuses on the Asian versus non-Asian distinction for two reasons. Asian names
are more reliably identified using this method, and the Asian presence in the industry is
large enough to offer meaningful variation. Approximately 10 percent of partners in the
sample are identified as Asian. Summary statistics for these covariates are reported in
Table 1.

11



2.2 VC Partner Data

The VC data are supplemented with firm-level information on professional and alumni
networks, constructed from the LinkedIn profiles of VC partners. LinkedIn is an online
platform for professional networking where individuals voluntarily disclose their career
history, educational background, and other credentials. The underlying dataset was as-
sembled by a private data provider in 2017 through large-scale web scraping of publicly
available LinkedIn profiles, capturing a range of attributes including employment history
and education.

For the present study, the dataset is filtered to include individuals identified as part-
ners or directors at the VCfirms in themain sample. While LinkedIn data are self-reported
and may contain inaccuracies, such concerns are mitigated by the incentives for senior
professionals tomaintain accurate public profiles. In addition, manual screeningwas con-
ducted to remove spurious or clearly inconsistent entries.

A remaining limitation is that not all individuals maintain LinkedIn profiles, a gap
more pronounced among smaller VC firms with fewer listed partners. As a result, the
coverage of historical networks may be incomplete, potentially attenuating the estimated
effect of alumni and professional ties. Although the LinkedIn data are at the individual
level, all professional and alumni networks are aggregated to the firm level for empirical
analysis.

Professional networks

Professional networks are constructed using work history data from the LinkedIn profiles
of VC partners. An adjacency matrix H𝑝 is defined such that each element ℎ𝑖 𝑗 represents
the number of shared work experiences between partners at VCs 𝑖 and 𝑗. A shared expe-
rience is defined as a case in which at least one partner from each VC has worked at the
same company at some point in time. The value of ℎ𝑖 𝑗 is computed as the total number of
such pairwise overlaps across all partners of the two firms.

It is acknowledged that not all shared affiliations reflect actual interpersonal relation-
ships, as individuals may not have worked together directly. Consequently, the measure
ℎ𝑖 𝑗 should be interpreted as a proxy for the potential basis of professional ties, rather than
a direct measure of existing social links. Shared employment history lowers the barrier
to future interaction and thus serves as a plausible foundation for informal networking.
Summary statistics for pairwise professional connections are presented in Table 2. Three
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forms of the variable are reported: the raw count of shared affiliations, a log-transformed
version, and a binary indicator equal to one if at least one shared connection exists.

Alumni networks

Alumni networks are constructed analogously, based on educational background. The
adjacency matrix H𝑎 is defined such that ℎ𝑖 𝑗 denotes the number of alumni connections
between VCs 𝑖 and 𝑗. A connection is counted when one partner from each VC has at-
tended the same educational institution. The final value of ℎ𝑖 𝑗 is the sum of all such pair-
wise overlaps across partners from both firms. This measure captures potential affinity or
ease of networking that may arise from shared educational backgrounds. As with profes-
sional networks, the alumni network is used as a proxy for the potential basis of informal
ties. Summary statistics for these connections are also reported in Table 2.

2.3 Evidence of network on performance

To establish a benchmark, the correlation between VC performance and network position
is examined, following the empirical strategy of Hochberg, Ljungqvist, and Lu (2007). The
econometric model is

𝐸𝑥𝑖𝑡𝑅𝑎𝑡𝑒𝑖 = 𝛾𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑖 + 𝑋𝑖𝛽 + 𝜀𝑖 , (2)

where the dependent variable 𝐸𝑥𝑖𝑡𝑅𝑎𝑡𝑒𝑖 denotes the proportion of a VC’s portfolio com-
panies that successfully exited through either an IPO or an acquisition. The central ex-
planatory variable is a measure of network centrality, constructed using various defini-
tions outlined above. While Hochberg, Ljungqvist, and Lu (2007) address endogeneity by
constructing time-lagged centrality measures based on coinvestment activity in the five
years preceding each fund’s vintage year, the present specification abstracts from the time
dimension. The purpose of this reduced-form model is to document the strength of the
correlation between performance and network position. Endogeneity concerns are ad-
dressed in subsequent sections using a structural framework.

Table 3 reports the estimation results from equation (2) and serves as a baseline for
comparison with later structural estimates. All coefficients on the centrality measures are
positive and statistically significant, consistent with theoretical expectations. For example,
an additional connection—corresponding to a one-unit increase in degree centrality—is
associated with a 0.2 percentage point increase in exit rate, holding other factors constant.
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Table 3: Reduced-form evidence of network effect on VC performance

Dependent variable:
Exit rate

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Degree 0.002∗∗∗ 0.002∗∗∗

(0.0002) (0.0004)
Betweenness 9.857∗∗∗ 15.972∗∗∗

(2.068) (4.092)
Harmonic centrality 8.517∗∗∗ 6.517∗∗∗

(0.850) (0.952)
Eigenvector centrality 0.637∗∗∗ 0.929∗∗∗

(0.057) (0.121)
No. startups 0.001∗∗∗ −0.001∗∗∗ 0.002∗∗∗ 0.001∗∗∗ −0.001∗∗∗

(0.0001) (0.0003) (0.0003) (0.0001) (0.0003)
Percent business & finance 0.306∗∗∗ 0.277∗∗∗ 0.289∗∗∗ 0.335∗∗∗ 0.261∗∗∗

(0.093) (0.090) (0.092) (0.090) (0.089)
Percent consumer G&S 0.190∗ 0.164∗ 0.177∗ 0.184∗ 0.150

(0.099) (0.097) (0.098) (0.096) (0.095)
Percent healthcare 0.425∗∗∗ 0.394∗∗∗ 0.392∗∗∗ 0.419∗∗∗ 0.385∗∗∗

(0.090) (0.088) (0.089) (0.087) (0.086)
Percent info tech 0.405∗∗∗ 0.364∗∗∗ 0.370∗∗∗ 0.379∗∗∗ 0.330∗∗∗

(0.092) (0.090) (0.091) (0.089) (0.089)
Percent female 0.014 0.019 0.016 0.010 0.021

(0.039) (0.038) (0.038) (0.038) (0.037)
Percent Asian −0.016 −0.017 −0.016 −0.026 −0.019

(0.034) (0.033) (0.033) (0.032) (0.032)
Constant 0.339∗∗∗ 0.398∗∗∗ 0.100∗∗∗ 0.332∗∗∗ 0.047 0.035 0.064 −0.168∗ 0.049

(0.013) (0.012) (0.033) (0.013) (0.083) (0.080) (0.082) (0.086) (0.079)

Observations 670 670 670 670 670 670 670 670 670
R2 0.133 0.033 0.131 0.156 0.143 0.190 0.163 0.200 0.214
Adjusted R2 0.131 0.031 0.129 0.155 0.134 0.181 0.153 0.190 0.204

Notes: Estimates of equation (2) of various specifications are presented. Columns (1)-(4) only use centrality
measure as the explanatory variable. Columns (5)-(8) include additional covariates. ∗, ∗∗, and ∗∗∗ indicates
statistical significance at the 10, 5, and 1% levels.

A one-standard-deviation increase in betweenness centrality (approximately 0.005) cor-
responds to a 5 percent increase in the exit rate. These magnitudes are comparable to
those reported in Hochberg, Ljungqvist, and Lu (2007), reinforcing the robustness of the
centrality-performance relationship.

Before turning to the structural framework, several limitations of the reduced-form ap-
proach merit discussion. First, the analysis is subject to significant endogeneity concerns
arising from both omitted variables and reverse causality. Unobserved characteristics,
such as partner ability or reputation, may influence both network position and fund per-
formance. For instance, highly capable VCs may be more effective at securing attractive
deals and cultivating strategic relationships. Additionally, reverse causality is plausible:
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successful funds are more likely to attract coinvestors, and better-performing VCs may be
selectively targeted for syndication by their peers. As a result, observed centrality may
reflect performance outcomes rather than cause them.

Second, centrality measures, aside from degree, are abstract summaries of network
position that are nonlinear in connections and difficult to interpret economically. These
metrics do not provide insight into the marginal effect of adding a connection or improv-
ing the quality of an existing one. For example, while it is possible to estimate the effect of
a one-standard-deviation increase in betweenness or eigenvector centrality, such changes
do not map clearly onto intuitive or policy-relevant interpretations. Even degree central-
ity, which counts direct connections, captures only local network effects and ignores the
broader influence of indirect ties. It also conflates the number and quality of connec-
tions, making it difficult to assess whether ties are formed with high- or low-performing
peers. A more precise interpretation of network effects requires a model with explicit
micro-foundations that links performance directly to the characteristics and outcomes of
connected agents. This is the focus of the next section.

3 Structural Network Model
Following Battaglini, Sciabolazza, and Patacchini (2020) and Battaglini, Patacchini, and
Rainone (2021), this section presents a condensed version of the structural model and its
econometric specification. Full details are provided in the appendix and the referenced pa-
pers. The central feature of themodel is the equilibriumdetermination ofVCperformance,
where each VC’s outcome depends on the networked interactions with peers. Two net-
workmodels are introduced in sequence: an exogenousmodel, inwhich VCs are endowed
with predetermined connections, and an endogenous model, in which VCs strategically
form links in anticipation of their performance implications. The analysis begins with
a micro-founded production function that captures how social connections contribute to
performance, drawing on foundational ideas from information economics.

3.1 Baseline exogenous networks

Production function

Financial intermediarymarkets, including venture capital, are characterized by high levels
of uncertainty, risk, and information asymmetry. To mitigate these frictions, VCs play two
critical roles: screening and value-adding. The startup landscape is saturated with ven-
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tures, but only a small subset will generate outsized returns. VCs must carefully screen
opportunities before committing capital and, once invested, actively support portfolio
companies through strategic guidance, operational expertise, and access to networks—
until exit via acquisition or IPO becomes viable. Both functions rely heavily on informa-
tion: screening hinges on the ability to identify high-potential startups amid noisy signals,
while value-adding depends on the VC’s access to relevant resources and connections. In
a networked environment, the quality and reach of information are shaped bywhom a VC
is connected to, both in terms of the number (extensive margin) and productivity (inten-
sive margin) of its peers. This motivates a simple structural framework in which a VC’s
performance depends on the performance of its connected peers, in addition to its own
effort and characteristics.

Consider a market that consists of 𝑛 VCs, indexed by 𝒩 = {1, . . . , 𝑛}. Each VC 𝑖 ∈ 𝒩
wants to maximize its performance 𝑃𝑖 that follows the Cobb-Douglas production function
with two inputs,4 social connectedness 𝑠𝑖 and own effort 𝑙𝑖 :

𝑃𝑖 = 𝜌𝑠𝛼𝑖 𝑙
1−𝛼
𝑖 + 𝜀𝑖 , (3)

where 𝜀𝑖 is an idiosyncratic shock and 𝜌 > 0 is a productivity constant. Social connected-
ness 𝑠𝑖 is defined as a weighted average of the performance of VC 𝑖’s network peers:

𝑠𝑖 =
∑
𝑗∈𝒩

𝑔𝑖 𝑗𝑃𝑗 , (4)

where 𝑔𝑖 𝑗 ≥ 0 denotes the intensity of the unilateral social link from VC 𝑖 to VC 𝑗. Let
the matrix G = (𝑔𝑖 𝑗) denote the structure of the social network, with 𝑔𝑖 𝑗 either binary
(denoting the presence of a link) or continuous (capturing connection strength). For now,
let us assume that the industry is exogenously endowedwith the network G. Wewill relax
this assumption later. Because of the Cobb-Douglas functional form, 𝛼 is the elasticity
of 𝑃𝑖 with respect to 𝑠𝑖 , that is, the responsiveness of a VC’s performance with respect
to its social connectedness 𝑠𝑖 . Intuitively, 𝑔𝑖 𝑗 captures the quantity of VC 𝑖’s social ties
(the extensive margin), while 𝑃𝑗 captures the quality of these ties (the intensive margin).
Thus, performance depends not only on individual effort, but also on the productivity of
connected peers and the structure of the underlying network.

4The performance term 𝑃𝑖 represents the effectiveness of VC 𝑖 in generating successful investment out-
comes. Empirically, this can be proxied by the fund’s historical exit rate—the proportion of portfolio com-
panies that achieve a successful IPO or acquisition.
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Before proceeding, it is useful to interpret the economic mechanism captured by equa-
tion (3), which links aVC’s performance𝑃𝑖 to the performance of its peers throughnetwork-
based interactions. First, in the screening stage, 𝑃𝑖 can be interpreted as the strength or
precision of VC 𝑖’s signal about a startup’s quality. Connections to other informed VCs
improve signal accuracy through shared information and referrals. Second, in the value-
adding phase, 𝑃𝑖 captures the social and human capital that enables a VC to support
portfolio companies—primarily through targeted advice, strategic connections, and oper-
ational expertise. Because VCs rarely engage in day-to-day operations, much of their con-
tribution stems from informational and reputational capital. Third, in the matching pro-
cess between startups and investors, 𝑃𝑖 can also reflect a VC’s reputation. Well-connected
VCs aremore visible and credible to entrepreneurs, and associationwith high-performing
peers signals competence and enhances the likelihood of being selected by top startups.

Exogenous network equilibrium

To close the model, let the cost of effort be linear, given by 𝑙𝑖 , so that the VCmaximizes net
performance 𝑃𝑖 − 𝑙𝑖 . Under mild regularity conditions, there exists a unique equilibrium
in which all VCs simultaneously choose optimal effort levels. The resulting equilibrium
performance vector 𝑷 satisfies the following autoregressive system:

𝑷 = 𝛿G𝑷 + 𝜺, (5)

where 𝛿 = 𝜌
1
𝛼 (1−𝛼) 1−𝛼

𝛼 is the social spillover (Battaglini, Sciabolazza, and Patacchini 2020).

While the derivation is relegated to the appendix, equation (5) is intuitive: being con-
nected to high-performing peers enhances one’s own performance. Comparing equation
(5) with the definition of alpha centrality in equation (1), we see that the equilibrium
performance vector 𝑷 corresponds exactly to the alpha centrality measure, with network
weight 𝛿 and exogenous influence 𝜺. The key distinction is that, in this model, centrality
is not an externally computed summary statistic used to explain performance—it is the
equilibrium outcome of the model itself. In this sense, performance is not a consequence
of centrality; it is centrality. The structural formulation thus provides a deeper behavioral
interpretation: being effective is equivalent to being central in the flow of information and
influence. Compared to the reduced-form model in equation (2), which regresses perfor-
mance on precomputed centrality measures, the structural model explains performance
as emerging directly from the pattern of connections.
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3.2 Endogenous network formation

A key limitation of the exogenous network approach is that it treats link formation as
driven solely by observable similarity (e.g., homophily), while ignoring strategic consid-
erations in network formation. If a VC’s performance improves due to exogenous fac-
tors, it is natural to expect other VCs to seek closer ties, anticipating spillovers from high-
performing peers. This reverse causality is not captured in the baseline model (5) and is
instead often absorbed into an endogeneity correction. Moreover, the analysis so far as-
sumes that observed coinvestment ties fully reflect relevant connections, but informal and
personal relationships—often unobserved—may also influence performance. These latent
social ties introduce an additional layer of endogeneity that cannot be addressed through
standard correction techniques. Together, these concerns motivate a structural model in
which social networks are formed endogenously in equilibrium.

The structure of the model remains similar, but it now unfolds over two periods. In
the first period, VC 𝑖 chooses its network connections 𝒈 𝑖 = (𝑔𝑖1, . . . , 𝑔𝑖𝑛) in anticipation
of how these links will affect its future performance. In the second period, given the re-
alized network, it then selects effort level 𝑙𝑖 , and performance outcomes are determined
in equilibrium. Forward-looking VCs optimize their network formation decisions in the
first period, internalizing the effect of their connections on equilibrium effectiveness. The
equilibrium is defined by the pure strategy profile (𝒈 𝑖 , 𝑙𝑖), where 𝒈 𝑖 maps the VC 𝑖’s type to
a vector of connections, and 𝑙𝑖 maps both type and network structure to the chosen effort
level.

The final component of the model is the cost of forming social links. In the first period,
VC 𝑖 incurs a cost 𝑐(𝑔𝑖 𝑗 , 𝜃𝑖 𝑗 ;𝜆) to establish a connection of intensity 𝑔𝑖 𝑗 with VC 𝑗. This cost
is increasing in the connection strength 𝑔𝑖 𝑗 and decreasing in the pairwise compatibility
𝜃𝑖 𝑗 , which captures how naturally VCs 𝑖 and 𝑗 are able to form a tie (to be specified below).
I assume the following isoelastic cost function:

𝑐(𝑔𝑖 𝑗 , 𝜃𝑖 𝑗 ;𝜆) = 𝜆
1 + 𝜆

(
𝑔𝑖 𝑗
𝜃𝑖 𝑗

)1+ 1
𝜆

, (6)

where 𝜆 > 0 captures the curvature of the cost function. As will become clear, 𝜆 provides
a convenient measure of the elasticity of link formation with respect to peer performance,
i.e., how responsive VC 𝑖’s optimal connection intensity is to the value of being linked to
high-performing peers.

18



Endogenous network equilibrium

Given the setup, Battaglini, Patacchini, and Rainone (2021) defines a network competitive
equilibrium (𝒍 ,𝑷 ,G) that satisfies three conditions: (1) In period 1, each VC chooses a vec-
tor of connections 𝒈 𝑖 = (𝑔𝑖1, . . . , 𝑔𝑖𝑛) optimally given 𝑷 (VCs are “price-taking”); (2) In
period 2, each VC chooses own effort 𝑙𝑖 optimally given 𝑷 and 𝒈 𝑖 ; and (3) Performance 𝑃𝑖

satisfies the production function given 𝑙𝑖 and 𝒈 𝑖 (price must clear the market). Under mild
regularity conditions, a unique pure-strategy equilibrium exists with interior solutions.
The equilibrium performance 𝑷 is characterized by

𝑃𝑖 = 𝜑
∑
𝑗
(𝜃𝑖 𝑗𝑃𝑗)1+𝜆 + 𝜀𝑖 (7)

for all 𝑖, where 𝜑 is a function of the structural parameters 𝜌, 𝛼, and 𝜆.5 In equilibrium,
the social connectedness G is given by

𝑔𝑖 𝑗 = 𝜃1+𝜆
𝑖 𝑗 (𝛼𝛿𝑃𝑗)𝜆 (8)

for all 𝑖 ≠ 𝑗.

Equation (7) states that the resulting equilibrium performance is governed by a sys-
tem of nonlinear equations. The parameter 𝜑 captures the strength of network spillovers.
Comparing the endogenous system in equation (7) with the exogenous network equilib-
rium in equation (5), performance can be interpreted as a generalized form of alpha cen-
trality, augmented by a nonlinear component driven by 𝜆. This nonlinearity arises from
endogenous network formation: because VC 𝑖 optimally chooses its connection with 𝑗, 𝑔𝑖 𝑗 ,
proportional to 𝑃𝜆

𝑗 in equation (8), its own performance 𝑃𝑖 becomes a function of 𝑃1+𝜆
𝑗 . In

this endogenous framework, centrality and performance are no longer separable; being
central in the network reflects both connection strength and peer quality, jointly deter-
mined through forward-looking strategic behavior.

Finally, under the parametric specification in equation (6), the elasticity of link inten-

5The closed-form expression is 𝜑 = 𝛼𝜆𝛿1+𝜆, where 𝛿 = 𝜌
1
𝛼 (1 − 𝛼) 1−𝛼

𝛼 is a shorthand parameter in the
model identical to that in equation (5). Details are provided in the appendix.
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sity 𝑔𝑖 𝑗 with respect to peer performance 𝑃𝑗 is exactly equal to𝜆.6 This gives𝜆 a convenient
and intuitive interpretation: it captures both the sensitivity of link formation to peer qual-
ity and the strength of the feedback between performance and network structure. When
𝜆 = 0, equations (7) and (8) reduce to the baseline model (5), in which the network is
exogenously given and fixed. Thus, 𝜆 provides a structural measure of how much ac-
tive, performance-driven network formation occurs in the VC industry, and how much
the endogenous model improves upon the exogenous benchmark in explaining observed
performance.

4 Estimation

4.1 Baseline specifications

For estimation, the unobserved component of performance is assumed to depend linearly
on observable VC-level characteristics. Let X = [𝑿1, · · · ,𝑿 𝑛]′ denote the matrix of covari-
ates. The baseline empirical model takes the form:

𝑷 = 𝛿G𝑷 + X𝜷 + 𝜺, (9)

which corresponds to a spatial autoregressive (SAR)model commonly used in the network
literature. This system can be estimated via maximum likelihood and allows for direct
inference on 𝛿, the reduced-form parameter capturing the strength of peer spillovers.7 If
𝛿 = 0, network spillovers are absent, and themodel reduces to a standard linear regression
on individual characteristics.

Estimation is implemented using multiple specifications of the adjacency matrix G.
The baseline specification relies on observed coinvestment ties, which reflect formal col-
laboration between VC firms. While standard in the literature, this approach is vulnera-
ble to endogeneity arising from simultaneity and omitted variables. To address this, I also
consider alternative networkmatrices based on historical affiliations—specifically, alumni

6The elasticity of a link 𝑔𝑖 𝑗 with respect to the effectiveness of 𝑗 is

𝜀𝑔𝑖 𝑗 ,𝑃𝑗 =
𝜕𝑔𝑖 𝑗
𝜕𝑃𝑗

𝑃𝑗

𝑔𝑖 𝑗
= 𝜃1+𝜆

𝑖 𝑗 (𝛼𝛿𝑃𝑗)𝜆−1𝛼𝛿
𝑃𝑗

𝑔𝑖 𝑗
= 𝜆.

7Recall that 𝛿 is a composite of the structural parameters 𝜌 and 𝛼 from the Cobb-Douglas production
function in equation (3), which cannot be separately identified.
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and professional networks, denotedH𝑎 andH𝑝 , respectively—constructed frombiograph-
ical information. These past connections are plausibly exogenous to current performance
and help mitigate concerns related to unobserved heterogeneity. However, they do not
capture the influence of ongoing, contemporaneous interactions. To reconcile this limi-
tation, a two-step estimation procedure is introduced, linking past and current networks
while accounting for selection into coinvestment relationships.

Instrumental variable (IV) approach

The baseline specification in equation (9) is subject to endogeneity concerns due to simul-
taneity and omitted variables. For example, a VC partner’s intrinsic ability or socioeco-
nomic background may influence both performance and network formation, leading to
biased estimates of peer effects. To address these issues, a two-step Heckman-style cor-
rection is introduced to account for selection into network links. Historical affiliations—
specifically, alumni and professional ties—serve as proxies for unobserved individual het-
erogeneity.

In the first stage, the probability of a coinvestment tie between VC 𝑖 and VC 𝑗 is mod-
eled as a function of past connections between their partners, based on shared educational
and employment backgrounds. This step controls for selection driven by characteristics
correlated with both performance and network structure. The residual from this regres-
sion captures unobserved factors influencing link formation and is included in the second
stage as a control function. The performance equation is then re-estimated, incorporating
this correction to isolate the causal effect of peer performance while mitigating endogene-
ity bias.

The identification strategy using alumni and professional networks relies on two con-
ditions: relevance and exogeneity. Relevance is relatively uncontroversial. Shared edu-
cational and occupational experiences are well-documented predictors of long-term pro-
fessional relationships. In the venture capital setting, such historical affiliations plausibly
influence the formation of coinvestment ties, a pattern confirmed in the first-stage regres-
sion.

The exogeneity condition is more demanding. It assumes that historical connections
affect current performance only through their influence onnetwork formation, not through
any direct or unobserved channels. This assumption may be difficult to satisfy in environ-
ments like venture capital, where informal and persistent social ties often operate along-
side formal partnerships. While these instruments help mitigate endogeneity concerns
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related to unobserved ability and background characteristics, they may not fully account
for latent social relationships. For this reason, alumni and professional networks are best
viewed as useful but partial instruments. The structural model introduced in the next
section addresses this limitation by endogenizing network formation directly.

The first step estimates a standard dyadic model of link formation, in which the pres-
ence or intensity of a coinvestment connection between VC 𝑖 and VC 𝑗 is explained by their
historical ties and the distance between their observable characteristics. The specification
is given by

𝑔𝑖 𝑗 = 𝛾0 + 𝛾1ℎ𝑖 𝑗 +
∑
ℓ

𝛾ℓ 𝑑(𝑋ℓ
𝑖 , 𝑋

ℓ
𝑗 ) + 𝜂𝑖 𝑗 , (10)

where ℎ𝑖 𝑗 denotes a past connection through shared educational or professional affilia-
tion, and 𝑑(𝑋ℓ

𝑖 , 𝑋
ℓ
𝑗 ) is a distance metric between VCs 𝑖 and 𝑗 along characteristic ℓ . The

error term 𝜂𝑖 𝑗 captures unobserved determinants of link formation. Intuitively, the prob-
ability or strength of a coinvestment tie increases with prior affiliation and decreases with
dissimilarity in key attributes, reflecting homophily in network formation.

In the second step, two estimation strategies are available: a standard two-stage least
squares (2SLS) instrumental variable (IV) approach using the predicted links 𝑔̂𝑖 𝑗 from the
first stage, or a control functionmethodbased on the residuals 𝜂̂𝑖 𝑗 , analogous to aHeckman
correction. The second approach requires an assumption on the covariance of the residuals
𝜺 and 𝜂𝑖 𝑗 , which are outlined in the appendix. In particular, it assumes that the correlation
is the same between unobserved characteristics determining link formation 𝜂𝑖 𝑗 and the
unobserved characteristics driving the outcome 𝜀𝑖 for all VCs. Under this correction, the
equilibrium performance equation is augmented as follows:

𝑷 = 𝛿G𝑷 + X𝜷 + 𝜓𝝃 + 𝜺, (11)

where 𝜉𝑖 =
∑

𝑗≠𝑖 𝜂𝑖 𝑗 aggregates the residuals from the first-stage link formation equation.
The additional term 𝜓𝝃 captures unobserved individual heterogeneity that influences
both network formation and performance, correcting for selection bias in the estimation
of peer effects.
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4.2 Endogenous network formation

For econometric implementation of endogenous network formation, individual hetero-
geneity is assumed to be a linear function of observable characteristics. The resulting
equilibrium condition yields the main estimating equation:

𝑃𝑖 = 𝜑
∑
𝑗
(𝜃𝑖 𝑗𝑃𝑗)1+𝜆 + 𝑋𝑖𝛽 + 𝜀𝑖 , (12)

where 𝜑 and 𝜆 are structural parameters, 𝑋𝑖 denotes the vector of characteristics for VC
𝑖, and 𝜀𝑖 is the idiosyncratic error term. The term 𝜃𝑖 𝑗 captures the compatibility between
VCs 𝑖 and 𝑗 and governs the strength of their latent social connection.

Compatibility 𝜃𝑖 𝑗 is modeled as a Bernoulli random variable, where the probability
of a tie is given by a logistic function of 𝜒𝑖 𝑗 , a latent connectivity index that depends on
historical ties and pairwise distances in observable characteristics:

𝑃𝑟(𝜃𝑖 𝑗 = 1|𝜒𝑖 𝑗) =
exp(𝜒𝑖 𝑗)

1 + exp(𝜒𝑖 𝑗) , (13)

with 𝜒𝑖 𝑗 = 𝜅0 + 𝜅1ℎ𝑖 𝑗 +
∑
ℓ

𝜅ℓ 𝑑(𝑋ℓ
𝑖 , 𝑋

ℓ
𝑗 ),

where ℎ𝑖 𝑗 denotes a prior connection (e.g., shared educational or employment background),
and 𝑑(𝑋ℓ

𝑖 , 𝑋
ℓ
𝑗 ) represents the distance between VCs 𝑖 and 𝑗 along characteristic ℓ . This for-

mulation links observed historical data to the latent structure of social ties that influence
equilibrium performance.

A final note distinguishes equation (13) from the link formationmodel used in the first
step of the two-step networkmodel in equation (10). In equation (13), the outcome variable
is 𝜃𝑖 𝑗 , which represents latent compatibility between VCs and governs the probability of
a social tie. In contrast, equation (10) models 𝑔𝑖 𝑗 , the observed coinvestment connection
itself, as a function of past ties and characteristic distances. While the two specifications are
similar in form, their interpretation is fundamentally different. In the network formation
model, social networks 𝑔𝑖 𝑗 are not observed directly but are endogenously recovered from
the equilibrium in equation (8). As will be shown in the empirical results, the recovered
social networks share important features with observed coinvestment ties but also reveal
distinct patterns of informal connectivity.

23



4.3 Estimation method

The estimation is implemented using Bayesian methods. The main estimation equations
are the baseline network model (9), the two-step procedure (11), and the structural model
with endogenous network formation (12). In each case, VC performance 𝑷 appears on
both sides of the equations through network interactions, introducing simultaneity that
renders classical estimation approaches infeasible or inconsistent. Instead, all models are
estimated via a Bayesian framework that accommodates the recursive structure of equi-
librium and facilitates inference on the full posterior distribution of parameters.

Specifically, estimationproceeds viaApproximate BayesianComputation (ABC), a sim-
ulation-basedmethodparticularly suited to structuralmodelswith intractable likelihoods.
The algorithm builds on the classic Metropolis-Hastings framework (see Metropolis et
al. 1953; Hastings 1970) and follows the implementation in Marjoram et al. (2003) and
Battaglini, Patacchini, and Rainone (2021). Starting from an initial value of the parameters
𝜔, the algorithm proposes a candidate parameter vector 𝜔′ from a pre-specified transi-
tion kernel. If the proposed parameter 𝜔′ fits the observed data 𝑷 better according to the
equilibrium condition than the current parameter 𝜔 does, then the algorithmmoves to the
proposed parameter 𝜔′ with some probability. The algorithm generates a Markov chain
with a limiting stationary distribution, which, under the assumption that themodel is cor-
rectly specified, coincides with the true conditional distribution of the parameter 𝑃(𝜔|𝑷),
the object of our interest.

5 Results

5.1 Baseline specifications

Table 4 reports estimation results from the baseline exogenous network model. This spec-
ification relates VC performance to observed network connections, without correcting for
endogeneity or accounting for latent social ties. Column (1) provides a benchmark OLS
regression of exit rates on VC characteristics alone, ignoring network effects. As expected,
performance is positively associatedwith fund size,measured by the number of supported
startups. This finding aligns with prior work showing that larger VCs tend to outperform,
likely due to greater resources and broader deal access. Industry specialization also plays
a role: VCs focused on healthcare and information technology exhibit higher exit rates,
reflecting strong growth in these sectors over the sample period.
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Table 4: Estimation results of the baseline network model

Dependent variable:
Exit rate

(1) (2) (3) (4)
No networks Coinvestment networks Professional networks Alumni networks

𝛿 (Social spillover) 0.00934∗∗∗ 0.00127∗∗ 0.0107∗∗∗
(0.00126) (0.000548) (0.000605)

No. startups 0.000997∗∗∗ -0.00098∗∗∗ 0.000799∗∗∗ -0.000469∗
(0.000131) (0.000323) (0.000159) (0.000269)

Percent business & finance 0.306∗∗∗ 0.265∗∗∗ 0.295∗∗∗ 0.0694
(0.0927) (0.0882) (0.0925) (0.166)

Percent consumer G&S 0.19∗ 0.151 0.179∗ -0.0839
(0.0993) (0.0945) (0.0991) (0.179)

Percent healthcare 0.425∗∗∗ 0.388∗∗∗ 0.415∗∗∗ 0.14
(0.0898) (0.0845) (0.0896) (0.162)

Percent information tech 0.405∗∗∗ 0.354∗∗∗ 0.392∗∗∗ 0.0845
(0.0918) (0.0873) (0.0917) (0.165)

Percent female 0.0143 0.0198 0.0097 -0.00277
(0.0388) (0.0374) (0.0387) (0.0695)

Percent Asian -0.0163 -0.0212 -0.0195 0.049
(0.0335) (0.032) (0.0334) (0.06)

Constant 0.047 0.037 0.0444 -0.0701
(0.0826) (0.0782) (0.0823) (0.148)

Observations 670 670 670 670

Notes: Column (1) reports the OLS of exit rate on VC characteristics. Columns (2) through (4) report the
estimates of equation (9), with the coinvestment networks, professional networks, and alumni networks,
respectively. ∗, ∗∗, and ∗∗∗ indicates statistical significance at the 10, 5, and 1% levels.

Columns (2) through (4) of Table 4 present results from the baseline network model
in equation (9). Column (2) uses observed coinvestment ties G as the network matrix,
while Columns (3) and (4) use professional and alumni networks, H𝑝 and H𝑎 , respec-
tively. Across all specifications, the estimated coefficient on the peer effect parameter 𝛿 is
positive and statistically significant, consistent with the presence of network spillovers in
VC performance.

The estimated magnitude of 𝛿 admits multiple interpretations. At the intensive mar-
gin, a 10 percentage point increase in the exit rate of a coinvestor is associated with a 0.1
percentage point increase in the VC’s own exit rate, holding the network fixed. At the
extensive margin, forming a new connection with a VC whose exit rate is 10% yields a
similar improvement in expected performance. These effects are broadly consistent with
the reduced-form estimates in Table 3, where an additional coinvestor is associated with a
0.2 percentage point increase in exit rate based on degree centrality. While the structural
estimates are somewhat smaller in magnitude, they offer a more nuanced interpretation
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by jointly capturing both the quantity and quality of connections, rather than aggregating
ties through centrality alone.

5.2 IV approach

First step: link formation

As a first step in the instrumental variable (IV) strategy, I assess whether historical net-
works are predictive of current coinvestment ties. Table 5 reports OLS estimates from the
dyadic link formation model in equation (10). Columns (1) and (2) use binary indicators
for the presence of a coinvestment tie, while Columns (3) and (4) use the raw number of
connections between VC pairs as the outcome variable.

The results provide strong evidence of homophily in network formation. Coefficients
on the pairwise distances in fund size, industry specialization, and demographic charac-
teristics are consistently negative and statistically significant, indicating that VCs are more
likely to coinvest with similar peers. Demographic similarity appears particularly salient:
VCs with greater representation of female or Asian partners are more likely to syndicate
with others sharing these traits. This pattern may reflect preferences for in-group trust
and collaboration, or alternatively, structural segmentation in an industry where informal
networks shape access and opportunity.

Of particular interest for the IV strategy are the coefficients on professional and alumni
networks. Both variables are positive and statistically significant across specifications,
confirming that historical ties are predictive of current coinvestment behavior. In Columns
(1) and (2), the presence of an alumni connection increases the probability of a coinvest-
ment tie by approximately 5 percentage points, while a professional connection increases
it by 13 percentage points. The stronger predictive power of professional ties holds in the
continuous specifications as well: in Columns (3) and (4), each additional professional
connection is associated with an increase of 0.03 coinvestments, compared to 0.015 for
alumni connections. These results suggest that prior work experience plays a more sub-
stantial role than shared educational background in shaping current collaborative behav-
ior among VCs.

Second step

Table 6 reports the second-stage estimation results using the IV strategy to address en-
dogeneity in the baseline network model. As benchmarks, Column (1) presents OLS es-
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Table 5: First step in the Heckman-corrected model: coinvestment network formation

Dependent variable:
If coinvest No. coinvestments

(1) (2) (3) (4)
Professional connections 0.131∗∗∗ 0.0278∗∗∗

(0.00125) (0.000582)
Alumni connections 0.0461∗∗∗ 0.0154∗∗∗

(0.00065) (0.000214)
No. startups (absolute distance) -0.00367∗∗ -0.00349∗ -0.013 -0.011

(0.00178) (0.00179) (0.0134) (0.0134)
Percent business & finance (absolute distance) -0.0124∗∗∗ -0.0128∗∗∗ -0.0595∗∗∗ -0.0556∗∗∗

(0.00106) (0.00106) (0.00799) (0.00796)
Percent consumer G&S (absolute distance) -0.0189∗∗∗ -0.019∗∗∗ -0.083∗∗∗ -0.0864∗∗∗

(0.000877) (0.000883) (0.00662) (0.0066)
Percent healthcare (absolute distance) -0.0251∗∗∗ -0.0242∗∗∗ -0.107∗∗∗ -0.0994∗∗∗

(0.000782) (0.000788) (0.0059) (0.00588)
Percent information tech (absolute distance) -0.0102∗∗∗ -0.011∗∗∗ -0.0416∗∗∗ -0.041∗∗∗

(0.0013) (0.00131) (0.00981) (0.00978)
Percent female (absolute distance) -0.0182∗∗∗ -0.0169∗∗∗ -0.129∗∗∗ -0.113∗∗∗

(0.000565) (0.000575) (0.00425) (0.00424)
Percent Asian (absolute distance) -0.015∗∗∗ -0.0156∗∗∗ -0.108∗∗∗ -0.0946∗∗∗

(0.000572) (0.000578) (0.00429) (0.00429)
Constant 0.052∗∗∗ 0.0461∗∗∗ 0.268∗∗∗ 0.241∗∗∗

(0.000456) (0.000517) (0.00332) (0.00334)

Observations 448900 448900 448900 448900

Notes: Results from the estimation of equation (10). Columns (1) and (2) uses the binary outcome of coin-
vestment as the outcome variable. Columns (3) and (4) uses the number of coinvestments as the outcome
variable. ∗, ∗∗, and ∗∗∗ indicates statistical significance at the 10, 5, and 1% levels.

timates of exit rates on VC characteristics alone, and Column (2) replicates the baseline
network model using coinvestment ties from Table 4. Columns (3) through (6) report es-
timates from equation (11), incorporating a control function term derived from the first-
stage link formation model.

Across all specifications, the estimated network spillover effect 𝛿 remains positive and
statistically significant, consistent with the presence of peer effects in VC performance.
The magnitudes are similar to those in the baseline model, suggesting that the initial re-
sults are not driven by omitted variable bias. The coefficients on the control function term
𝝃, capturing unobserved individual-level factors affecting both performance and network
formation, are statistically insignificant. This finding implies that the professional and
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Table 6: Estimation results of the Heckman-correct network model

Dependent variable:
Exit rate

(1) (2) (3) (4) (5) (6)
No networks Baseline model IV (professional, binary) IV (alumni, binary) IV (professional, count) IV (alumni, count)

𝛿 (Social spillover) 0.00934∗∗∗ 0.00934∗∗∗ 0.00934∗∗∗ 0.00742∗∗∗ 0.00744∗∗∗
(0.00126) (0.00126) (0.00126) (0.000394) (0.000394)

No. startups 0.000997∗∗∗ -0.00098∗∗∗ -0.000979∗∗∗ -0.00098∗∗∗ -0.00466∗∗∗ -0.00465∗∗∗
(0.000131) (0.000323) (0.000323) (0.000323) (0.000263) (0.000262)

Percent business & finance 0.306∗∗∗ 0.265∗∗∗ 0.265∗∗∗ 0.266∗∗∗ 0.328∗∗∗ 0.332∗∗∗
(0.0927) (0.0882) (0.0884) (0.0885) (0.115) (0.115)

Percent consumer G&S 0.19∗ 0.151 0.15 0.152 0.307∗∗ 0.309∗∗
(0.0993) (0.0945) (0.0947) (0.0948) (0.123) (0.123)

Percent healthcare 0.425∗∗∗ 0.388∗∗∗ 0.388∗∗∗ 0.389∗∗∗ 0.155 0.159
(0.0898) (0.0845) (0.0847) (0.0847) (0.108) (0.108)

Percent information tech 0.405∗∗∗ 0.354∗∗∗ 0.353∗∗∗ 0.355∗∗∗ 0.361∗∗∗ 0.365∗∗∗
(0.0918) (0.0873) (0.0877) (0.0877) (0.113) (0.114)

Percent female 0.0143 0.0198 0.0198 0.0198 0.0754 0.0748
(0.0388) (0.0374) (0.0374) (0.0374) (0.0491) (0.0491)

Percent Asian -0.0163 -0.0212 -0.0211 -0.0212 0.0691∗ 0.0689∗
(0.0335) (0.032) (0.032) (0.032) (0.0405) (0.0406)

Constant 0.047 0.037 0.0376 0.0361 0.0934 0.09
(0.0826) (0.0782) (0.0785) (0.0785) (0.103) (0.103)

Observations 670 670 670 670 670 670

Notes: Column (1) reports the OLS of exit rate on VC characteristics. Column (2) reports the estimates of
equation (9). Columns (3) to (6) report the estimates of equation (11), with the professional networks and
alumni networks, either binary or raw count, respectively. ∗, ∗∗, and ∗∗∗ indicates statistical significance at
the 10, 5, and 1% levels.

alumni networks used as instruments do not contain additional explanatory power be-
yond what is already captured by observed coinvestment ties.

5.3 Endogenous network formation

This section presents the estimation results from the endogenous network formationmodel.
Table 7 andTable 8 report themedian values of the posterior distributions. Table 7 summa-
rizes the posterior medians for the key structural parameters of the network competitive
equilibrium in equation (12), including the peer spillover parameter 𝜑, the link formation
elasticity 𝜆, and the coefficients 𝛽 on VC characteristics. Table 8 reports posterior medians
of the parameters 𝛾 from the first-stage network formation equation (13).8

Before turning to the results, it is important to emphasize that both VC performance
and network structure are jointly determined in equilibrium. The following interpreta-

8Instead of standard errors, the tables report empirical 𝑝-values for the null hypothesis that the param-
eter equals zero. These are computed as the proportion of posterior draws on the opposite side of zero from
the posterior median. A 𝑝-value close to 0 or 1 indicates strong posterior support for a parameter being
strictly negative or strictly positive, respectively. For instance, a 𝑝-value of 1 implies that the entire posterior
support lies above zero, suggesting statistical significance at conventional levels.
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tions therefore rely on the assumption that small changes in peer performance or net-
work links have limited general equilibrium effects, i.e., they do not meaningfully alter
the broader network architecture.

The analysis begins with the parameter 𝜑 in equation (12), which captures the strength
of peer spillovers in the endogenous network setting. The estimate is positive and sta-
tistically significant, consistent with the presence of social externalities in performance.
While the magnitude of 𝜑 is not directly interpretable due to the nonlinear structure of
the model—specifically, the dependence on 𝑃1+𝜆

𝑗 —the implied effects are economically
meaningful. For example, an increase in the exit rate of a connected peer from 10% to
20% raises a VC’s own expected exit rate by approximately 0.09 percentage points. Simi-
larly, forming a new connection with a peer whose exit rate is 10% increases the VC’s own
performance by roughly 0.08 percentage points.

The parameter 𝜆 admits a more direct interpretation given the structure of the model.
As shown in equation (8),𝜆 represents the elasticity of connection intensity 𝑔𝑖 𝑗 with respect
to peer performance 𝑃𝑗 . That is, a 1% increase in a peer’s exit rate leads to a 0.74 percent-
age point increase in the intensity of the connection to that peer, holding all else constant
and assuming negligible general equilibrium feedback. This result suggests that VCs are
highly responsive to peer quality and strategically adjust their networks to strengthen ties
with more effective partners.
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Table 7: Results from the endogenous network model

Dependent variable:

Exit rate

𝜑 (Social spillover)† 0.0002∗∗∗

[1.0000]

𝜆 (Elasticity of network formation)† 0.7411∗∗∗

[1.0000]

No. startups 0.0010∗∗∗

[1.0000]

Percent business & finance 0.3395∗∗∗

[1.0000]

Percent consumer G&S 0.2165∗∗∗

[1.0000]

Percent healthcare 0.4897∗∗∗

[1.0000]

Percent information tech 0.4705∗∗∗

[1.0000]

Percent female 0.0148∗∗∗

[1.0000]

Percent Asian -0.0232∗∗∗

[0.0000]

Pseudo-𝑅2 0.8352
Penalized pseudo-𝑅2 0.8341
MSE 0.1648
MASD 0.4320
Observations 670

Notes: 𝜆 is the elasticity of link 𝑔𝑖 𝑗 with respect to the performance of 𝑗, 𝐸 𝑗 . 𝜑 is calculated based on the
estimates of 𝜌, 𝛼, and 𝜆. Estimates of parameters in equation (12) are reported in column (1). The median of
the posterior distribution estimated with the ABC algorithm is reported for each parameter. The empirical
𝑝-value of zero on the estimated posterior is reported in the brackets. 𝑝-value is equal to 1 if the support
of the empirical posterior distribution is greater than zero, whereas 𝑝-value is equal to 0 if the support of
the empirical posterior distribution is less than zero. ∗, ∗∗, and ∗∗∗ indicates statistical significance at the 10,
5, and 1% levels based on empirical 𝑝-values.
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Table 8 reports the estimated determinants of social connections in the VC industry
based on the posterior medians from the first-stage network formation model. Consistent
with prior results, there is strong evidence of homophily: VCs exhibit a pronounced ten-
dency to form ties with peers who share similar demographic characteristics and industry
specializations.

One notable exception is the positive coefficient on the distance in the number of sup-
ported startups, suggesting that VCsmay bemore likely to form connectionswith partners
of different fund sizes. This result points to a potential complementarity in network for-
mation. VCs may seek to diversify their information sets or mitigate risk by engaging
with firms that differ in scale. Smaller VCsmight benefit from the reach and experience of
larger funds, while larger VCs may gain access to niche expertise or localized knowledge
from smaller peers. These heterogeneous connections could enhance the value of social
ties beyond what homophilous relationships alone can offer.

A key finding from Table 8 is the positive and statistically significant coefficient on past
connections. While the magnitude is not directly interpretable due to the logistic specifi-
cation in equation (13), the direction and significance of the estimate are noteworthy. Im-
portantly, these parameters are inferred from VC performance data within the structural
model, rather than being derived from observed coinvestment networks. This alignment
with intuitive expectations underscores the model’s capacity to recover meaningful social
structures from performance outcomes alone. Notably, the social networks inferred from
themodel differ from the observed coinvestment networks, suggesting that themodel cap-
tures latent relational dynamics not immediately evident in direct investment ties. This
distinction opens avenues for further research into the nature and implications of these
latent social networks in the VC industry.

To place the endogenous network formation model in context, I compare it with two
benchmark specifications. The first is a benchmark without network effects, in which VC
performance depends solely on observable characteristics. This is equivalent to imposing
𝜌 = 0 in the production function (3), and consequently 𝜑 = 0 in equation (12). The second
benchmark allows performance to depend on networks, but treats connections as exoge-
nously given, i.e., VCs do not choose their links strategically. This corresponds to setting
the network formation elasticity 𝜆 = 0, such that 𝑔𝑖 𝑗 becomes equal to 𝜃𝑖 𝑗 in equation (8),
and equation (12) reduces to the baseline exogenous network model in equation (9).

Several key findings emerge. First, the estimated social spillover parameter 𝜑 is posi-
tive and statistically significant in both the exogenous and endogenous models, confirm-
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Table 8: Results of link formation in the endogenous network model

Dependent variable:
Compatibility

Professional connection 1.3400∗∗∗
[1.0000]

No. startups (absolute distance) 0.0039∗∗∗
[1.0000]

Percent business & finance (absolute distance) -4.1258∗∗∗
[0.0000]

Percent consumer G&S (absolute distance) -3.1104∗∗∗
[0.0000]

Percent healthcare (absolute distance) -0.8625∗∗∗
[0.0000]

Percent information tech (absolute distance) -1.9955∗∗∗
[0.0000]

Percent female (absolute distance) -0.1731∗∗∗
[0.0000]

Percent Asian (absolute distance) -0.3480∗∗∗
[0.0000]

Constant -1.8462∗∗∗
[0.0000]

Observations 448,900
Notes: Estimates of parameters in equation (13) are reported in column (1). The median of the posterior
distribution estimatedwith the ABC algorithm is reported for each parameter. The empirical 𝑝-value of zero
on the estimated posterior is reported in the brackets. 𝑝-value is equal to 1 if the support of the empirical
posterior distribution is greater than zero, whereas 𝑝-value is equal to 0 if the support of the empirical
posterior distribution is less than zero. ∗, ∗∗, and ∗∗∗ indicates statistical significance at the 10, 5, and 1% levels
based on empirical 𝑝-values.

ing that peer performance influences a VC’s own success. However, the magnitude is no-
tably smaller in the endogenous case, likely reflecting the model’s adjustment for strategic
link formation. Second, the elasticity of network formation 𝜆 is estimated at 0.7411 and
is highly significant, indicating that VCs actively respond to peer quality when forming
social connections. Across all models, fund size and industry specialization are strong
predictors of exit performance, particularly in healthcare and information technology. In-
terestingly, the coefficient on percent Asian becomes increasingly negative and significant
as network structure ismore fullymodeled, suggesting potential segmentation in network-
driven access to high-quality deals.
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Table 9: Comparison between the main estimation and two benchmarks

Dependent variable:
Exit rate

(1) (2) (3)
No networks Exogenous networks Endogenous networks

𝜑 (Social spillover)† - 0.0012∗∗∗ 0.0002∗∗∗
[1.0000] [1.0000]

𝜆 (Elasticity of network formation)† - - 0.7411∗∗∗
[1.0000]

No. startups 0.0010∗∗∗ 0.0011∗∗∗ 0.0010∗∗∗
[1.0000] [1.0000] [1.0000]

Percent business & finance 0.3539∗∗∗ 0.3300∗∗∗ 0.3395∗∗∗
[1.0000] [1.0000] [1.0000]

Percent consumer G&S 0.2403∗∗∗ 0.2298∗∗∗ 0.2165∗∗∗
[1.0000] [1.0000] [1.0000]

Percent healthcare 0.4730∗∗∗ 0.4323∗∗∗ 0.4897∗∗∗
[1.0000] [1.0000] [1.0000]

Percent information tech 0.4546∗∗∗ 0.4581∗∗∗ 0.4705∗∗∗
[1.0000] [1.0000] [1.0000]

Percent female 0.0154 0.0108∗∗∗ 0.0148∗∗∗
[0.6571] [1.0000] [1.0000]

Percent Asian -0.0158 -0.0172∗∗∗ -0.0232∗∗∗
[0.3185] [0.0000] [0.0000]

Observations

Notes: 𝜆 is the elasticity of link 𝑔𝑖 𝑗 with respect to the performance of 𝑗, 𝐸 𝑗 . 𝜑 is calculated based on the
estimates of 𝜌, 𝛼, and 𝜆. Estimates of parameters in equation (7) are reported in column (3). Column (1)
reports the estimates with the constraint 𝜆 = 0. Column (2) reports the estimates with the constraint 𝜌 = 0.
The median of the posterior distribution estimated with the ABC algorithm is reported for each parameter.
The empirical 𝑝-value of zero on the estimated posterior is reported in the brackets. 𝑝-value is equal to 1 if
the support of the empirical posterior distribution is greater than zero, whereas 𝑝-value is equal to 0 if the
support of the empirical posterior distribution is less than zero. ∗, ∗∗, and ∗∗∗ indicates statistical significance
at the 10, 5, and 1% levels based on empirical 𝑝-values.

6 Conclusion
The venture capital industry operates in an environment defined by high uncertainty,
asymmetric information, and limited transparency. In such settings, networks, both for-
mal and informal, play a critical role in reducing informational frictions, shaping invest-
ment decisions, and influencing performance outcomes. While it is widely acknowledged
that networks matter in VC, most empirical work has focused on observed coinvestment
ties using reduced-form methods, often leaving unresolved the underlying endogeneity
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and the role of latent social relationships.

This paper introduces a structural approach to studying VC networks, offering a uni-
fied framework that links network formation, information flow, and fund performance.
To the best of my knowledge, this is the first study to estimate VC networks using a struc-
tural equilibriummodel rooted inmicroeconomic foundations. The results provide robust
evidence that VCs with stronger connections to high-performing peers achieve better out-
comes, measured by the proportion of successful portfolio exits. More significantly, the
analysis shows that much of this effect can be attributed to unobserved social connections
that are not captured by formal coinvestment data.

The paper makes three main methodological contributions. First, I develop a micro-
founded production model that connects peer performance to own performance through
information diffusion, grounding the analysis in theories of financial intermediation and
organizational learning. Second, I use historical professional and alumni networks to con-
struct instruments that help address endogeneity in link formation. These results high-
light the persistent influence of background affiliations and suggest that the VC industry
is shaped by relationship-driven dynamics that may limit access for outsiders. Third, I
propose an endogenous network formation model that recovers latent social networks di-
rectly from performance outcomes, past affiliations, and firm-level characteristics. This
final contribution offers a novel way to study informal networks and shows that the re-
covered social structure, while overlapping with observed coinvestments, contains mean-
ingful and distinct differences.

Taken together, the findings demonstrate that VC success depends not only on capital
and skill, but also on access to and integrationwithin the right networks. Informal ties and
shared histories can be just as influential as formal syndication partnerships in determin-
ing who gets access to deals and resources. Future work could build on this framework by
examining the dynamics of network evolution, the role of geographic and sectoral clus-
tering, or the interaction between social capital and innovation outcomes. Understanding
these forces can help explain the deeper social architecture that drives performance in
entrepreneurial finance.
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Appendix A Details of the Structural Model
This section reproduces results in Battaglini, Sciabolazza, andPatacchini (2020) andBattaglini,
Patacchini, and Rainone (2021).

Exogenous network equilibrium

The production function for VC performance is given by

𝑃𝑖 = 𝜌𝑠𝛼𝑖 𝑙
1−𝛼
𝑖 + 𝜀𝑖 , (A.1)

where 𝑠𝑖 denotes the social connectedness of VC 𝑖, defined as

𝑠𝑖 =
∑
𝑗∈𝒩

𝑔𝑖 𝑗𝑃𝑗 . (A.2)

𝑔𝑖 𝑗 is the intensity of the social link betweenVCs 𝑖 and 𝑗, and 𝑃𝑗 represents the performance
of peer 𝑗.9

Each VC chooses effort 𝑙𝑖 to maximize performance net of effort cost:

max
𝑙𝑖

𝜌𝑠𝛼𝑖 𝑙
1−𝛼
𝑖 + 𝜀𝑖 − 𝑙𝑖 . (A.3)

The first-order condition yields the optimal effort level:10

𝑙∗𝑖 =
(
𝜌(1 − 𝛼)) 1

𝛼 𝑠𝑖 . (A.4)

Substituting this optimal choice back into the production function gives the equilibrium
performance:

𝑃∗
𝑖 = 𝛿

∑
𝑗∈𝒩

𝑔𝑖 𝑗𝑃∗
𝑗 + 𝜀𝑖 , (A.5)

9Themodel imposes the following parameter restrictions. Effort is bounded such that 𝑙𝑖 ∈ [0, 𝑙] for some
𝑙 > 0, and the cost of effort is normalized to 𝑙𝑖 . Link intensity is similarly bounded, with 𝑔𝑖 𝑗 ∈ [0, 𝑔̄] for some
𝑔̄ > 0, and self-connections are ruled out by assumption, i.e., 𝑔𝑖𝑖 = 0 for all 𝑖. Individual heterogeneity enters
additively through 𝜀𝑖 , which is assumed to lie in the interval [¯𝜀, 𝜀̄]with ¯𝜀 > 0 and 𝜀̄ ∈ (0, 1). Finally, assume
that 𝜌 𝑔̄𝛼 𝑙1−𝛼 + 𝜀̄ < 1. This provides a sufficient condition that guarantees 𝑃𝑖 ∈ (0, 1).

10Assume that 𝑙 >
((1 − 𝛼)𝜌) 1

𝛼 . This guarantees interior solutions of 𝑙𝑖 < 𝑙.

38



where 𝛿 = 𝜌
1
𝛼 (1 − 𝛼) 1−𝛼

𝛼 is a reduced-form parameter that summarizes the strength of
social spillovers. Because the system in (A.5) is linear in 𝑷, it admits a unique closed-form
solution. Letting G denote the matrix of link intensities and 𝜺 the vector of individual
shocks, the equilibrium is given by

𝑷(G, 𝜺; 𝛿) = [I − 𝛿G]−1𝜺. (A.6)

Exogenous network equilibrium

The cost of establishing a social connection betweenVCs ismodeled by the following func-
tional form:11

𝑐(𝑔𝑖 𝑗 , 𝜃𝑖 𝑗 ;𝜆) = 𝜆
1 + 𝜆

(
𝑔𝑖 𝑗
𝜃𝑖 𝑗

)1+ 1
𝜆

, (A.7)

where 𝑔𝑖 𝑗 is the intensity of the social connection from 𝑖 to 𝑗, 𝜃𝑖 𝑗 captures compatibility
or ease of forming the link, and 𝜆 > 0 governs the curvature of the cost function. The
parameter 𝜆 thus determines the elasticity of connection formation with respect to peer
performance and plays a key role in shaping equilibrium link choices.

The model is set in two periods. In period 1, VCs choose their network connections; in
period 2, they select effort levels conditional on the realized network. Each VC is charac-
terized by a type 𝜔𝑖 = (𝜀𝑖 , (𝜃𝑖 𝑗)𝑗 ,ℳ𝑖), where 𝜀𝑖 represents idiosyncratic heterogeneity, 𝜃𝑖 𝑗

denotes compatibility with each potential peer VC 𝑗, and ℳ𝑖 is the set of VCs such that
𝜃𝑖 𝑗 > 0. Let Ω denote the space of types.

A strategy profile consists of a pair of functions (𝑔, 𝑙). The connection strategy 𝑔 :
Ω → [0, 𝑔̄]𝑛−1 maps each VC’s type to a vector of connection intensities, specifying how
strongly they link to each other peer. The effort strategy 𝑙 : Ω×𝐺 → [0, 𝑙]maps each VC’s
type and the realized network 𝐺 to an effort level in period 2. A pure-strategy equilib-
rium is defined as a fixed point (𝑔, 𝑙) in which all VCs optimize given their expectations
over peer performance, network structure, and the cost of forming and maintaining social
connections.

11The cost of link formation 𝑐𝑖 𝑗 is incurred solely by VC 𝑖, implying an asymmetric cost structure. That
is, 𝑐𝑖 𝑗 is borne by 𝑖 alone, while 𝑐 𝑗𝑖 is borne by 𝑗. This assumption simplifies the exposition and can be
generalized to a symmetric or shared-cost formulation without affecting the core results.
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We solve the game by backward induction. In period 2, VC 𝑖 chooses its own effort 𝑙𝑖
to maximize its performance net of effort cost. This problem is identical to the baseline
model analyzed earlier, with equilibrium performance 𝑷∗ determined by the autoregres-
sive system in equation (A.5). Ignoring discounting and substituting the period-2 optimal
effort into the production function, the continuation value for VC 𝑖 is given by

𝑃∗
𝑖 (G, 𝜺) − 𝑙∗𝑖 (G, 𝜺) = 𝛼𝛿

∑
𝑗∈𝒩

𝑔𝑖 𝑗𝑃∗
𝑗 (G, 𝜺) + 𝜀𝑖 . (A.8)

In period 1, VC 𝑖 chooses its connections 𝒈 𝑖 = (𝑔𝑖1, . . . 𝑔𝑖𝑛) to maximize its expected con-
tinuation value net of connection costs. Using the parametric cost function from equation
(A.7), the link formation problem becomes

max
𝒈 𝑖

∑
𝑗∈𝒩

(
𝛼𝛿𝑔𝑖 𝑗𝑃∗

𝑗 (G, 𝜺) + 𝜀𝑖 − 𝜆
1 + 𝜆

(
𝑔𝑖 𝑗
𝜃𝑖 𝑗

)1+ 1
𝜆

)
. (A.9)

The first-order condition of equation (A.9) yields the following characterization:

𝑔∗𝑖 ≤ 𝜃1+𝜆
𝑖 𝑗 (𝛼𝛿𝑃∗

𝑗 )𝜆. (A.10)

Together, equations (A.5) and (A.10) characterize the network competitive equilibrium
(𝒍∗,𝑷∗,G∗). If an interior solution exists, then the two conditions collapse to the following
system:

𝑃∗
𝑖 = 𝜑

∑
𝑗∈𝒩

(𝜃𝑖 𝑗𝑃∗
𝑗 )1+𝜆 + 𝜀𝑖 , (A.11)

where 𝜑 = 𝛼𝜆𝛿1+𝜆. In other words, the equilibrium performance 𝑷∗ is characterized by a
system of nonlinear equations.12

Control function approach

To account for selection bias using the control function approach in the second stage, as-
sume the unobserved components (𝜀, 𝜂)have the following joint distribution. 𝜀 = (𝜀1, · · · , 𝜀𝑛)′
and 𝜂𝑖 = (𝜂𝑖1, · · · , 𝜂𝑖𝑛)′ are jointly normally distributed with mean zero. The covariance
has the following structure: 𝐸(𝜀2

𝑖 ) = 𝜎2
𝜀, 𝐸(𝜂2

𝑖 𝑗) = 𝜎2
𝜂, 𝐸(𝜀𝑖𝜂𝑖 𝑗) = 𝜎𝜀𝜂 for all 𝑖 ≠ 𝑗, and

12Assume that 𝑔̄ > (𝛼𝛿)𝜆𝜃̄1+𝜆, where 𝜃̄ = max𝜃𝑖 𝑗 . If 𝛿 ≤ 1
𝜃̄

(
1

(1+𝜆)𝛼𝜆𝑚̄

) 1
1+𝜆 , then the equilibrium is unique.
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𝐸(𝜂𝑖 𝑗𝜂𝑖𝑘) = 0 for all 𝑗 ≠ 𝑘. Under these assumptions, the expected value of the second-stage
error conditional on the first-stage residuals is given by 𝐸(𝜀𝑖 |𝜂𝑖1, · · · , 𝜂𝑖𝑛) = 𝜓

∑
𝑗≠𝑖 𝜂𝑖 𝑗 ,

where 𝜓 = 𝜎𝜀𝜂/𝜎2
𝜂. Incorporating this selection term yields the corrected model:

𝑷 = 𝛿G𝑷 + X𝜷 + 𝜓𝝃 + 𝜺, (A.12)

where 𝜉𝑖 =
∑

𝑗≠𝑖 𝜂𝑖 𝑗 captures unobserved factors influencing the likelihood of forming
links.
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