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Abstract

Networks play a key role in enabling information flow and improving fund perfor-
mances in the venture capital (VC) industry. However, the often-used coinvestment
networks do not reflect the true social connections, i.e., the informal and personal ties
between VC partners. In this paper, I connect three VC networks–coinvestment, past,
and social–and study their impact on VC performances with a structural network
model. To address the endogeneity issues in this setting, I exploit exogenous vari-
ations in VC partners’ past connections through professional and alumni networks.
Furthermore, to incorporate social networks, I endogenize network formations and
structurally recover the unobserved, underlying social connections from VCs’ equi-
librium performance outcomes. I find that social networks have a significant effect
on VC performances. Counterfactual experiments suggest that the industry suffers in
terms of both welfare and equality from this reliance on personal connections.
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1 Introduction
Networks are a prominent feature of the venture capital (VC) industry (Da Rin, Hellmann,
and Puri 2013). Despite intense competition for entrepreneurial projects, VCs also collab-
orate extensively through coinvestment (or syndication). Researchers generally agree that
better-connected VCs also perform better (Tian 2011), but establishing a causal connection
faces several empirical challenges. First, simultaneity is a major endogeneity concern: Do
networks cause superior performance or are they caused by superior performance (Da
Rin, Hellmann, and Puri 2013)? Causality in both directions is plausible. The endogene-
ity issue is exacerbated by VCs’ (unobserved) ability to source better deal flow and add
value to portfolio companies. Second, empirical studies generally rely on some aggregate
measures of network centrality without micro-foundations, lacking intuition interpreta-
tions and unable to pin down the marginal effect of connections. Third, systematic data
on social networks–personal and informal ties between VCs–are not available. Although
coinvestments are a good measure of connections, they could understate or misrepresent
network effects because the rich web of personal ties also plays a key role in the industry.

In this paper, I connect three VC networks in a coherent framework and study their
impact on fund performances. In a typical round of startup funding, several VCs jointly
invest in the target company to spread the risk and share the responsibility of nurturing
the startup. This coinvestment networks, for example, connects all but a handful of VCs
in the US market. Underlying and parallel to this rich web of formal engagements are
the social networks–personal and informal ties among VC partners. The VC industry is a
small and tight-knit community with frequent and meaningful interactions beyond coin-
vestments. Two VC partners may have never coinvested in a startup but could well be
mutually supportive and offer each other valuable resources. These social connections,
in turn, are based on long-standing alumni and professional networks well before partners
have entered the VC industry. Most VC partners have graduated from top colleges, gone
to a handful of business schools, and worked at large financial institutions and business
corporations. The VC industry is often called the old boys’ club because these past con-
nections carry on to shape the industry today.1

Networks help improve a VC’s performance through the diffusion of information that
mitigates risk and uncertainty. VCs perform two important roles in entrepreneurship

1https://www.forbes.com/sites/oliversmith/2019/02/03/new-industry-report-exposes-british-vc-
industry-as-an-old-boys-club
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finance, screening (selecting companies with high growth potential) and value-adding
(nurturing startups and helping them grow): both require significant informational in-
puts. To reduce risks in startup investing, VCs can exchange information and pool corre-
lated signals to select better investments. Social connections also help diffuse information
across sector and geographic boundaries and expand the reach of investments, allow-
ing VCs to diversify their portfolio (Hochberg, Ljungqvist, and Lu 2007). After diligent
screening, VCs actively add value to their portfolio companies and help startups grow
by sharing contacts, expertise, and resources. Strong relationships with other VCs also
improve the chances of securing follow-on funding for the startup. On the other hand,
entrepreneurship finance is a two-sided matching market in which startups also select
VCs (Sørensen 2007). Reputation of a VC is critical in the financial intermediary market
because startups care about the long-term implications of accepting VC funding (Nahata
2008). Being well-connected is a signal to entrepreneurs of the VC’s strength and reliabil-
ity.

I adopt a structural approach to address the aforementioned challenges and to identify
the effect of network spillovers. Following the network models by Battaglini, Leone Scia-
bolazza, and Patacchini (2020) and Battaglini, Patacchini, and Rainone (2021), I present
three empirical models to deal with these problems progressively. The key idea of all
three models is that given information flow through networks, the performance of a VC
should be a function of the performance of other VCs with whom it has a connection.
Being connected with better performing VCs improves one’s own performance through
the flow of information.

In the baseline network model, I focus on the micro-foundations and disregard the endo-
geneity problem. In what follows, I take VC performance as a proxy for the informational
content that a VC possesses. That is, a VC performs better if and only if it has superior
information. Given the mechanism, the structural model starts with a simple production
function that relates a VC’s performance to its peers’ performances, in addition to the
effort exerted by the VC and its characteristics. The production function reflects the as-
sumption that if two VCs are connected, then they would share information and mutually
enhance each other. VCs solve their optimal effort problem in rational expectation of the
equilibrium performance of other VCs. It can be shown that there exists a unique Nash
equilibrium in which the performances of all VCs are jointly determined in a system of
equations, with performances on both sides of the equation mediated through networks.
Equivalently, VC performances “solve” VCs’ connections in equilibrium. Further, the
performance of a VC corresponds to its alpha centrality in the network, lending to a nice
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interpretation that VC performances are direct measures, rather than the consequences,
of network positions. To implement this model, I estimate the network spillover effect
using the observed coinvestment networks directly. VCs are assumed to be endowed
with these connections rather than actively choosing them. This approach is similar to
much of the existing literature as far as data is concerned, essentially relating VC perfor-
mances to coinvestment networks. The difference is my approach is supplemented with
a micro-foundation that models how networks can improve performance.

To address the endogeneity problem in this empirical setting, I adopt a two-step esti-
mation procedure that corrects for selection biases in a Heckman-corrected network model.
I use the alumni and professional networks extracted from the LinkedIn profiles of VC
partners to control for endogeneity. In the first step, pairwise coinvestment connections
are explained by past alumni and professional connections as well as the distances be-
tween VCs in terms of their characteristics under the assumption of homophilly. The
residuals from the first step are used as a regressor in the second step which is the same
as the baseline network model, capturing individual heterogeneity that is unexplained by
the coinvestment networks. This approach solves the simultaneity problem because the
alumni and professional networks have taken shape before the coinvestment networks do
and, therefore, cannot be affected by the latter. In addition, the alumni and professional
networks control for individual unobservable factors such as the ability and socioeco-
nomic background of VC partners. This approach enables a causal identification between
VC networks and performance.

The analysis so far has ignored one important structural aspect of networks, namely
that equilibrium performance should also induce connection formation. Coinvestment
connections not only depend on past connections, but also VCs’ rational expectation of
their peer’s performance. To address this concern, in the endogenous network formation
model, I enrich the model with an explicit account for network formation and recover the
unobserved social networks from the data. In this slightly more complicated formulation
of a two-period game, VCs also choose their connections in rational expectation of the
impact of these choices on their performances, taking others’ performances as given in
equilibrium. This structural model not only accounts for the source of endogeneity due
to simultaneity, but also enables a direct recovery of the elasticity of network formation,
that is, how performance induces network formation. Since the networks are now equilib-
rium objects recoverable from the data, I interpret them as the underlying social networks
among VCs. The intuition is that the underlying social connections can be inferred from
the variations in the observed performances, the past professional and alumni networks,

4



as well as the distance between characteristics in network formation, assuming that the
network model is correctly specified. For example. if two VCs are similar in their char-
acteristics, have extensive past connections, and both perform well, then it is likely that
they share a strong social tie; conversely, if one excels but the other falls behind, then it is
likely that they have a weak connection. This approach has the advantage that it does not
rely on coinvestment networks at all and allows us to distinguish the difference between
the coinvestment networks and the social networks.

I present three sets of results following the outline above. First, in the baseline model,
controlling for other determinants of VC fund performance such as fund size, I find that
better-connected VCs also perform better in terms of the rate of successful portfolio ex-
its. If a VC has a coivestor’s exit rate increasing by 10%, or if it makes a new connection
with an exit rate of 10%, the VC would enjoy a 0.1 percentage increase in its own exit
rate. The magnitude of this estimates is comparable to the reduced-form regression relat-
ing performance to centrality measures. Exploiting potential sources of exogenous varia-
tion, I substitute the coinvesment networks with the professional or the alumni networks
and achieve similar results, which suggests that there are substantial similarities between
these networks in predicting VC performances.

Next, in the Heckman-corrected model, I first note that VCs display strong homophilly
in pursuing coinvestment relations and prefer partners with similar characteristics in
terms of fund size, industry of specialization, and demographic factors. Past connections
including both professional and alumni networks are also important in coinvestment de-
cisions, suggesting that the VC industry is indeed a tight-knit community with significant
barriers to entry in terms of past connections. After controlling for both reverse causality
and unobserved variables, I find that network spillovers are still present and the magni-
tude is similar to the baseline model and that the estimates on the unobserved individual
heterogeneity is insignificant. This could suggest that professional and alumni networks
do not contain additional information that are not already captured by the coinvestment
networks.

Lastly, estimation of the endogenous network formation model simultaneously re-
covers the elasticities of connection impact and of network formation. I find that a one
percent increase in the social connectedness of a VC, either in terms of establishing new
connections or improving existing connections, lead to a 0.2 percentage rise in its own exit
rate. Conversely, a one percent increase in the performance of a coinvestor induces a 0.74
percentage point increase in connection intensity. The model also recovers the underly-
ing social networks from VC performances, past connections, and characteristics without
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referencing to the coinvestment networks. I find that there are many similarities between
these two networks, indicating the validity and robustness of the structural model. Im-
portantly, there are also interesting differences between the recovered social networks
and the observed investment networks, suggesting that personal and informal ties, if the
interpretation stands, are relevant in determining VC performances.

The remainder of this article is organized as follows. Section 2 describes the data
and establishes reduced-form evidence consistent with Hochberg, Ljungqvist, and Lu
(2007). Section 3 describes the structural model, econometric specification, and estima-
tion method following Battaglini, Leone Sciabolazza, and Patacchini (2020) and Battaglini,
Patacchini, and Rainone (2021). Section 4 presents the estimation results of all three net-
work models. Section 5 concludes.

1.1 Related literature

The paper is the first attempt to structurally estimate VC networks and makes three dis-
tinct contributions to the VC literature. First, the paper provides a micro-foundation to
the connection between VC networks and performance. Past work has generally relied
on reduced-form approaches (Hochberg, Ljungqvist, and Lu 2007; Tian 2011). The con-
clusion is consistent with information theory in the finance literature, and generalizes
both the value-adding and screening explanations in the VC literature (Sørensen 2007;
Hochberg, Ljungqvist, and Lu 2007; Sorenson and Stuart 2001; Sorenson and Stuart 2008;
Das, Jo, and Kim 2011). Second, the structural approach provides an alternative solution
to the persistent endogeneity problem in the literature. Past work generally relies on em-
pirical designs (Hochberg, Ljungqvist, and Lu 2007; Hochberg, Ljungqvist, and Lu 2010)
to circumvent this problem. In addition, the structural approach also enables the simul-
taneous recovery of the impact of connections and performances on each other. Previous
work generally focuses on the former (Sorenson and Stuart 2001; Sorenson and Stuart
2008) or the latter (Lerner 1994; Du 2016; Bubna, Das, and Prabhala 2020) but not both.
Third, I provide a first attempt to characterize the social networks in the VC industry in
addition to the coinvestment networks. Social networks are widely assumed to play a key
role in many economically relevant environments, and notably, the financial intermediary
market. The literature is scarce in this aspect.
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2 Market and Data

2.1 VC data

The VC data contain all the deal flows of US-based VCs from 1990 to 2009. I choose 2009
as a cutoff date because a typical VC fund has a life cycle of around a decade, so I do not
yet have a full picture of the performances of recently established VCs. Each round of
funding consists of a target company and a handful of VCs known as a syndicate. The
target company could raise a few rounds of funding before exiting, and the VC investors
do not have to remain the same through the funding rounds. For companies that have
already exited, I observe its exit date and the way it exited, through either an initial public
offering (IPO), an acquisition by some other company, or a failure (write-off from the VC’s
portfolio). Otherwise, the company is deemed active with the following exceptions. If an
active company has not received another round of funding in the past five years, I assume
that it has failed (but not yet officially declared a write-off), observing that the typical life
cycle of a startup is not more than a decade. Furthermore, I only consider VC firms that
are traditional in the sense that they are small partnerships devoted exclusively to funding
startups. Investment banks, business conglomerates, healthcare companies are generally
excluded from the dataset because their large size precludes meaningful identification of
connections. Lastly, I only include VCs with at least one partner having a LinkedIn profile
because professional networks and alumni networks are important sources of exogenous
variation in this paper. The data consists of 15,777 rounds of funding involving a total of
670 VCs during the period. Table 1 presents summary statistics of the VCs used in our
estimation.

VC performance

Following the literature (Das, Jo, and Kim 2011; Du 2016; Lindsey 2008; Hochberg, Ljungqvist,
and Lu 2007), I define VC performance as the percentage of portfolio companies that have
successfully exited the market either through an IPO or an acquisition by some other com-
pany. I use exit rate and VC performance interchangeably in this paper. Ideally, I would
use direct data on the returns to investment of these VCs, but systematic data are not
available because VC firms are not required by regulations to disclose their investment
outcomes. The lack of data notwithstanding, VCs with higher exit rates would enjoy large
returns on investment. Additionally, the exit rate is a good measure for this study because
it is a value between zero and one, making the estimation easier in terms of convergence.
1 also presents summary statistics on the exit rate of VCs in the dataset.
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Table 1: Summary statistics of VC firms

mean sd min max
No. rounds 95.33 196.95 1.00 2373.00
No. startups 46.79 85.84 1.00 989.00
Years of experience 12.27 9.65 0.00 39.19
No. coinvestments 296.68 640.81 1.00 8075.00
No. coinvestors 101.95 145.65 1.00 1327.00

Performance
No. IPOs 5.45 15.82 0.00 186.00
No. acquisitions 17.99 36.97 0.00 375.00
No. write-offs 14.70 24.20 0.00 285.00
No. private companies 8.65 16.16 0.00 148.00
IPO rate 0.08 0.14 0.00 1.00
Exit rate 0.47 0.27 0.00 1.00

Attributes
Percent business and financial services 0.21 0.21 0.00 1.00
Percent consumer goods and services 0.15 0.19 0.00 1.00
Percent healthcare 0.21 0.31 0.00 1.00
Percent information technology 0.37 0.26 0.00 1.00
Percent female 0.15 0.27 0.00 1.00
Percent Asian 0.18 0.31 0.00 1.00

Centrality
Degree 101.95 145.65 1.00 1327.00
Betweenness 0.00 0.00 0.00 0.06
Harmonic 0.39 0.05 0.22 0.57
Eigenvector 0.11 0.15 0.00 1.00

Notes: Summary statistics of VC characteristics based on VC deals data.

Coinvestment networks

I construct the coinvestment networks based on VC deals. Recall that for each round of
funding, I observe all VCs involved. The adjacency matrix G is defined as such: For a
given pair of VCs i and j, gij is the number of coinvestments of the pair throughout the
period observed in the data. Note that the networks are in a sense weighted, whereby
gij represents the intensity or strength of the connection between i and j. Following con-
vention, I let gii = 0, i.e. a VC is not considered connected with oneself. For the estima-
tion, I also define two more metrics of connection intensity, a binary variable indicating if
two VCs have ever coinvested, and a log transformed number of coinvestments. Table 2
presents summary statistics on VC networks. The unit of observation is an ordered pair
of VCs. For the n VCs in the dataset, there are a total of n2 − n pairs of VCs.
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Table 2: Summary Statistics of Pairwise Connection Intensities

mean sd min max
Coinvestment, G

Having coinvested (Yes/No) 13.80 37.39 1.00 989.00
No. coinvestments 6.35 7.66 0.00 39.23
log(1+ no. coinvestments) 6.35 7.66 0.00 39.23

Professional connections, Hp

Having professional connections (Yes/No) 1.69 7.24 0.00 186.00
No. professional connections 4.29 10.91 0.00 285.00
log(1+ No. professional connections) 4.29 10.91 0.00 285.00

Alumni connections, Ha

Having alumni connections (Yes/No) 1.69 7.24 0.00 186.00
No. alumni connections 4.29 10.91 0.00 285.00
log(1+ No. alumni connections) 4.29 10.91 0.00 285.00

Notes: The unit of observation is a VC-VC pair. The number of coinvestments is calculated based on the
common funding round that both VCs participated in. Professional connections and alumni connections
are calculated at the individual level and aggregated at the VC level. For example, if partner A from VC 1
and partner B from VC 2 have both worked at the same company prior to joining their respective VCs, this
is one professional connection.

Given the adjacency matrix, I define four centrality measures of the VCs following
network and graph theory. Consider each VC a vertex and each connection an edge.
I define the following centrality of each vertex. The degree centrality of a vertex is the
number of edges it is connected to. I do not make the distinction between inward and
outward degrees in this study.2 Given that the networks are weighted, I could adjust the
degree centrality by the weights of the edges. The betweenness centrality of each vertex
is the number of shortest paths that pass through the vertex. For every pair of vertices
in a connected graph, there exists at least one shortest path between the vertices such
that the number of edges that the path passes through (or the sum of the weights of the
edges for weighted graphs) is minimized. Intuitively, betweenness measures the extent
to which a vertex acts as a bridge in the networks. The harmonic centrality of a vertex is the
average length of the shortest path between the node and all other nodes in the graph. (In
a connected graph, the more common notion is called the closeness centrality.) Intuitively,
harmonic measures how easy it is for a VC to reach other VCs in the entire industry. The
eigenvector centrality is a measure of the influence of a node in a network based on the idea
that connection to high-influence nodes increases the impact of oneself. The centralities

2See Hochberg, Ljungqvist, and Lu (2007) for a detailed discussion of the distinction in the context of
the VC industry.
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can be characterized by a linear system λx = Gx, where λ is the principal eigenvalue.
Table 1 presents summary statistics on these measures.

Additionally, it is convenient now to introduce the concept of alpha centrality (some-
times also named after Katz 1953; Bonacich and Lloyd 2001) which will be useful later.
The alpha centrality is an extension of the eigenvector centrality by incorporating external
influences. Mathematically, it is solution to the system

x = δGx + ε (1)

where ε is the amount of external influence that the nodes receive, and δ measures the
relative importance between external influence against the importance of connectivity.
We will encounter variations of equation (1) with different interpretations later. An al-
ternative formulation of the alpha centrality is through a generalization of the degree
centrality. It measures the number of all nodes that can be connected through a path,
while the contributions of distant nodes are penalized.

Covariates

I also include relevant VC characteristics in our analysis as covariates. First, the perfor-
mance of a VC is affected by its fund size and the industry the VC specializes in. I do not
observe VC fund sizes directly but can observe the number of startups supported by the
VC and the number of funding rounds participated. These variables are proxies for VC
fund size, under the reasonable assumption that larger VCs generally invest in more star-
tups. Second, VCs often specialize in one or a few industries of startups to avoid spread-
ing resources too thin. In the data, there are four large industries: business and financial
services, consumer goods and services, healthcare, and information technology. Third, I
include two important demographic factor of VCs, the percentage of female partners and
the percentage of Asian partners. The VC industry is dominated by white males, making
it curious to understand how females and non-whites add to the dynamics. Gender and
racial information is imputed based on partners’ first and last names extracted from their
LinkedIn profiles (to explained later). The algorithm is conservative in the sense that un-
certainty resolves in favor of the male and the non-Asian. I focus on the Asian/non-Asian
divide for two reasons. First, Asian first and last names are more identifiable compared
to other minorities (black and Latino) in the US. Second, there is a sizable Asian commu-
nity within the VC industry, giving rise to more data variation. The dataset suggests that
as many as 10% of VC partners are Asian. Table 1 presents summary statistics on these
covariates.
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2.2 LinkedIn Data

I supplement the VC data with firm-level past professional and alumni networks based
on information extracted from VC partners’ LinkedIn profiles. LinkedIn is an online plat-
form for professional networking and market. Individuals can voluntarily post their pro-
fessional profiles on the site, including but not limited to work experience, education,
skills, references, etc. The dataset was gathered by a private company in 2017 by web-
scraping all profiles on LinkedIn, including work experience and education background.
I select individual profiles who have been partners and directors of the VCs in our dataset.
One limitation of the LinkedIn dataset is that the experiences are self-reported and could
potentially contain many errors or inaccuracies. I believe this is not a big issue on the
large scale because partners have an incentive to accurately report their profiles. I have
also taken care to remove spurious experiences from the dataset. Another issue is that
some people do not have a LinkedIn profile, which tend to affect small VCs with fewer
partners, so our analysis could understate the effect of alumni and professional networks.
Note that the LinkedIn data is at the individual partner level, but for our purpose all data
are aggregated at the VC firm level.

Professional networks

I construct the professional networks of VCs based on their partners’ work experience.
I define an adjacency matrix Hp where hij is the amount of connections that VCs i and
j have based on how many work experiences their partners have shared in the past. If
two partners from two VCs have ever worked in a same company, I consider it a shared
experience. hij is a tally of all such shared experiences for all partners in VCs i and j.
One difficulty is that two partners with experience at the same company may have never
interacted or known each other. Hence the measure hij is noisy and potentially conflated.
It is better to think Hp as a measure of the basis for networking and therefore a proxy of
networks, rather than actual social links themselves. It is easier for partners with shared
experience to network with each other. Table 2 presents summary statistics of pairwise
work experience links based on LinkedIn data. Again, I present three metrics of the con-
nection intensity: a raw count, a log transformed count, and a binary variable indicating
if there’s a connection at all.

Alumni networks

I similarly construct the alumni networks based on education background. I define the
adjacency matrix Ha where hij is the amount of alumni connections that VCs i and j have
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based on how many pair of partners attended the same school. If two partners from two
VCs have attended the same school, I consider it an alumni connection. hij is a tally of all
such connections for all partners in VCs i and j. Table 2 presents summary statistics of
alumni networks based on LinkedIn data.

2.3 Evidence of network on performance

I first demonstrate a correlation between VC performance and network position, follow-
ing the empirical exercise by Hochberg, Ljungqvist, and Lu (2007). The econometric
model is given in equation (2). The outcome variable ExitRatei is the exit rate of VCs
measured by the percentage of successful exits through either an IPO and an acquisition
by another company. The explanatory variable of interest is the centrality measure of
various forms defined above. Note that Hochberg, Ljungqvist, and Lu (2007) adopts a
time-lagged approach to address the endogeneity concern: For a fund of a given vintage
year (the first year in which capital is delivered), measures of network centrality are con-
structed from coinvestment data for the 5 preceding years to eliminate reverse causality.
The model here is a simplified version that does not address the endogeneity concern by
incorporating the time dimension. I only intend to demonstrate the correlation and will
deal with the endogeneity problem via a structural approach.

ExitRatei = γCentralityi +Xiβ + εi (2)

Table 3 presents the estimation results of equation (2) and will be the benchmark of
other results in this study. As expected, all coefficients on the centrality measures are pos-
itive and significant. To be more concrete, having an additional connection (an increase
in degree by 1) is associated with a 0.2 percentage point increases in exit rates, all else
equal. Similarly, a one-standard-deviation increase (0.005) in the betweenness centrality
is associated with a 5% increases in exit rates, all else equal. The magnitudes of these es-
timates are reasonable and generally consistent with those in Hochberg, Ljungqvist, and
Lu (2007).

Before moving on, I note several issues with the reduced-form approach above. First,
the above analysis suffers from critical endogeneity concerns due to both omitted vari-
ables and reverse causality. There could be unobserved characteristics like abilities that
affect both network position and performances. Highly capable VCs could be better at
both networking and bringing their portfolio companies to successful exits. In addition,
superior performance could enable VCs to improve their network positions if VCs ac-
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Table 3: Reduced-form evidence of network effect on VC performance

Dependent variable:

Exit rate

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Degree 0.002∗∗∗ 0.002∗∗∗

(0.0002) (0.0004)

Betweenness 9.857∗∗∗ 15.972∗∗∗

(2.068) (4.092)

Harmonic centrality 8.517∗∗∗ 6.517∗∗∗

(0.850) (0.952)

Eigenvector centrality 0.637∗∗∗ 0.929∗∗∗

(0.057) (0.121)

No. startups 0.001∗∗∗ −0.001∗∗∗ 0.002∗∗∗ 0.001∗∗∗ −0.001∗∗∗

(0.0001) (0.0003) (0.0003) (0.0001) (0.0003)

Percent business & finance 0.306∗∗∗ 0.277∗∗∗ 0.289∗∗∗ 0.335∗∗∗ 0.261∗∗∗

(0.093) (0.090) (0.092) (0.090) (0.089)

Percent consumer G&S 0.190∗ 0.164∗ 0.177∗ 0.184∗ 0.150
(0.099) (0.097) (0.098) (0.096) (0.095)

Percent healthcare 0.425∗∗∗ 0.394∗∗∗ 0.392∗∗∗ 0.419∗∗∗ 0.385∗∗∗

(0.090) (0.088) (0.089) (0.087) (0.086)

Percent info tech 0.405∗∗∗ 0.364∗∗∗ 0.370∗∗∗ 0.379∗∗∗ 0.330∗∗∗

(0.092) (0.090) (0.091) (0.089) (0.089)

Percent female 0.014 0.019 0.016 0.010 0.021
(0.039) (0.038) (0.038) (0.038) (0.037)

Percent Asian −0.016 −0.017 −0.016 −0.026 −0.019
(0.034) (0.033) (0.033) (0.032) (0.032)

Constant 0.339∗∗∗ 0.398∗∗∗ 0.100∗∗∗ 0.332∗∗∗ 0.047 0.035 0.064 −0.168∗ 0.049
(0.013) (0.012) (0.033) (0.013) (0.083) (0.080) (0.082) (0.086) (0.079)

Observations 670 670 670 670 670 670 670 670 670
R2 0.133 0.033 0.131 0.156 0.143 0.190 0.163 0.200 0.214
Adjusted R2 0.131 0.031 0.129 0.155 0.134 0.181 0.153 0.190 0.204

Notes: Estimates of equation (2) of various specifications are presented. Columns (1)-(4) only use centrality
measure as the explanatory variable. Columns (5)-(8) include additional covariates. ∗, ∗∗, and ∗∗∗ indicates
statistical significance at the 10, 5, and 1% levels.

tively seek out better-performing peers to syndicate. More renowned and experienced
VCs will find it easier to find coinvestors.

Second, the centrality measures (with the exception of degree) are highly abstract con-
cepts that summarize social connections in a single index. They do not, however, tell us
the marginal effect of having an additional connection because these measures are nonlin-
ear in connections. In terms of interpretation, these measures are clumsy: I could only say
something about the effect of a one-standard deviation increase in centrality, but not that
of an addition of a connection or the improvement of my connections. The degree central-
ity does reflect the marginal impact, but only do so for the pair of connected individuals,
not accounting for the impact it has on individuals who are further down the networks. In
addition, it makes no distinction between the quantity and quality of connections. To un-
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derstand the marginal effect, I must first establish a model with a micro-foundation that
relates performances to social connections themselves, rather than through a summary
statistic. This will be the focus of the next section.

3 Structural Network Model and Estimation
Following Battaglini, Leone Sciabolazza, and Patacchini (2020) and Battaglini, Patacchini,
and Rainone (2021), I present a condensed version of the structural model and the econo-
metric specification. Readers are refereed to the appendix as well as the two papers for
details. The key idea of the model is the equilibrium outcome in which the performances
of all VCs are jointly determined. I present three network models in progression, each in-
tended to address an empirical challenge outlined in the introduction. I start with laying
out the micro-foundation of network models in the VC setting by introducing a produc-
tion function that leverages on the insights from information economics.

3.1 Baseline Network Model

Production function

Financial intermediary markets are characterized by uncertainty, risk, and information
asymmetry. To alleviate these problems, VCs perform two important roles in entrepreneur-
ship finance: screening and value-adding. The startup industry is saturated with business
ideas and new ventures, but only a tiny fraction of unicorns will eventually succeed. VCs
must sift these projects diligently before committing both capital and effort. After a de-
cision to invest, VCs continue to nurture and add value to their portfolio companies by
providing guidance and resources, until such time arrives when they are viable enough
to either make an IPO or be acquired by another company. Both of these roles require
significant informational input: Screening is by definition an information game, whereas
value-adding relies heavily on VCs having the right contacts and references. In a network
setting, the content or strength of one’s information depends on his connections, where
both the quantity (what might be called the extensive margin) and the quality (the inten-
sive margin) matter. This motivates a simple production function of the following form,
in which a VC’s performance depends on the performance of its connected peers, as well
as the effort exerted and individual characteristics.

Consider a market that consists of n VCs with N = {1, · · · , n}. Each VC wants to
maximize its performance, measured by the probability of bringing its portfolio compa-
nies into successful exits, which I call “effectiveness” and denote Ei. The effectiveness of
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each VC i, Ei, is a Cobb-Douglas production function with two inputs: its social connect-
edness si and its effort level li.

Ei = ρsαi l
1−α
i + εi (3)

where si =
∑

j∈N gijEj is an average of the effectiveness of the VCs that i has a connection
with, weighted by gij , a measurement of the social link between i and j. gij could be a
binary variable or a continuous variable (which can be interpreted as the connection in-
tensity.) εi is the individual heterogeneity. Because of the Cobb-Douglas functional form,
α is the elasticity ofEi with respect to si, that is, the responsiveness of a VC’s effectiveness
with respect to his social connectedness si. Notice that gij captures the quantity (extensive
margin) of one’s connections whereas Ej captures the quality (intensive margin).

Before moving on, I provide a quick interpretation of the mechanism through equa-
tion (3). The effectiveness Ei is the probability of VC’s ability to bring a portfolio to a
successful exit. This can be empirically observed and estimated by the exit rate of VC i.
But how is one’s effectiveness affected by his peers’ effectiveness in a network? Several
interpretations are consistent with the model. First, we can interpret Ei as the “signal”–to
be slightly technical–that i receives in the screening game when VCs decide if they want
to invest in a startup. Having more connections boost the accuracy of the signal so that
the VC could make a more informed decision. Second, Ei could be interpreted as the
social and human capital that the VC possesses during value-adding that largely boils
down to knowledge and information, where having more connections allows the VC to
offer more targeted help to their portfolio companies. Since VCs are not directly involved
in the day-to-day running of the startups, what they do is providing contacts, references,
and expertise. Third, Ei could be conversely interpreted as the reputation of VCs in a
matching market where they also face reverse selection from startups. Reputation is key
in any financial intermediary market, especially in the VC industry that is characterized
by small partnerships with elusive outward appearance. Being well-connected to other
reputable VCs gives VCs more exposure and signals to startups its strength and compe-
tence. I believe that all of these factor are relevant to the performance of VCs.

Equilibrium in the baseline model

Assume that the cost of effort is simply li. Under some regularity conditions and assump-
tions on the parameter space, we can solve for the optimal level of efforts and then derive
a unique equilibrium. (Details are in the appendix.)

15



Proposition 1. There is a unique equilibrium E characterized by the following autoregressive
system

E = δGE + ε (4)

where δ = ρ
1
α (1− α)

1−α
α .

While the derivation is relegated to the appendix, equation (4) makes intuitive sense
and says that being connected to effective individuals also make oneself effective. In
comparing equation (4) with the definition of alpha centrality in (1), we see that E is
exactly the alpha centrality with weight δ and exogenous influence ε. The difference is
that whereas I exogenously calculate centrality measures as explanatory variables from
the networks, this centrality measure E endogenously emerges out of the equilibrium
model. This lends a nice interpretation to the model: performance or effectiveness is a
direct measure of centrality itself, rather than a consequence of centrality. Being central is
equivalent to being effective. In comparing model (4) with the reduced-form model (2),
we see that the structural model explains the performance through connections directly,
rather than indirectly through a centrality measure that is a summary for connections.

In terms of estimation, I make the parametric assumption that heterogeneity is a linear
function of observable characteristics X = [X1, · · · ,Xn]′. It follows that

E = δGE + Xβ + ε (5)

System (5) is our baseline estimation model, and it corresponds to the linear structural
model common in the networks literature. It is a spatial autoregressive (SAR) system that
can be estimated easily using the maximum likelihood. Note that in this case, we make
inference directly on the parameter δ that is a composite of ρ and α in the Cobb-Douglas
production function. A direct regression does not allow me to recover both parameters.
This issue will be dealt with shortly when I introduce Bayesian methods later. If it were
the case that δ = 0, then social spillover is absent and (5) is reduced to a simple linear
regression on individual characteristics with no regard to networks.

To implement the regression, I use both the coinvestment networks G or the alumni or
professional networks Ha and Hp as the adjacency matrix. The former is our benchmark
model that relates coinvestment networks directly to VC performances. This approach
suffers from critical endogeneity issue due to both simultaneity and omitted variables.
The second method treats the past connections as exogenous and alleviate some endo-
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geneity concerns. The trouble is that it does not shine light on the effect of current net-
works by regressing on the past networks. To resolve this issue, I connect the past and
current networks by introducing a two-step estimation procedure much like the standard
Heckman selection model.

3.2 Heckman-Corrected Network Model

As mentioned in the introduction, the baseline network model suffers from endogeneity
problem due to simultaneity and omitted variables. A VC partner’s intrinsic ability and
his socioeconomic background, for example, could both affect performance and shape
his networks. To address the endogeneity concern and account for the selection bias in
network formation, I introduce a two-step Heckman correction procedure to equation
(5). I use the alumni and professional networks as controls for the unobserved individ-
ual factors in the model. To preview my approach, the coinvestment connection between
VCs i and j is first explained in terms of past connections between partners in VCs i and
j through educational background and professional experiences. This first step accounts
for the selection bias due to intrinsic ability and socioeconomic background, and the resid-
ual of this regression captures all unobservable characteristics in network formation not
explained by the past.

For the causal inference to be valid, both the alumni and professional networks must
be relevant and exogenous. The relevance condition is easy to see. Alumni and profes-
sional networks offer a well-established leverage for people to pursue professional op-
portunities in general. Shared experiences have long-lasting effects on the propensity to
socialize later in life. I will demonstrate this pattern in the VC setting in the first-stage re-
gression. The exogeneity condition relies on the assumption that past connections affect
VC activities only through coinvestment. This assumption is a strong one and precludes
past connections from acting in any informal engagement. As I have argued in the in-
troduction, this is not the case since VCs also share personal and informal ties beyond
coinvestment. I will deal with this issue in the third model, but for the moment we can
concede that these instruments alleviates some endogeneity concerns due to intrinsic abil-
ity and socioeconomic background, but not necessarily personal ties. They are plausible
albeit imperfect.

The first step is a standard dyadic model of link formation that explains coinvestment
connections in terms of past connections as well as the distances between two VCs in
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terms of their characteristics.

gij = γ0 + γ1hij +
∑
l

γl+1d(X l
i , X

l
j) + ηij (6)

where hij is the connection between i and j through work or college, and d(X l
i , X

l
j) is

a distance metric measuring the difference between i and j in terms of characteristic l.
Intuitively, the social connection between two VCs is increasing in their past connections,
and decreasing in the distance between their characteristics.

In the second step, either a standard instrumental variable estimation with estimated
ĝij or a Heckman correction procedure exploiting the residuals η̂ij are possible. The first
approach is difficult because the inference on standard errors are complicated, so I will
adopt the second approach here. It requires an assumption on the covariance of the resid-
uals ε and ηij , which are outlined in the appendix. Roughly speaking, the correlation
between unobserved characteristics determining link formation ηij and unobserved char-
acteristics driving the outcome εi must be the same across all VCs. The equilibrium is
similarly characterized by the following modified system with an additional term.

E = δGE + Xβ + ψξ + ε (7)

where ξi =
∑

j 6=i ηij . The term ψξ includes all unobserved characteristics of VC i and
captures the selection bias in the link formation.

3.3 Endogenous Network Formation Model

One shortcoming of the exogenous variable approach is that it takes a naive approach to
network formation based on homophilly but fails to account for the structural aspects.
Suppose that a VC’s performance improves due to some exogenous reasons, it is conceiv-
able that other VCs would want to strengthen the tie because a closer connection with
strong VCs would improve their own performances. This reverse causality is not mod-
elled in the baseline network model (4) and treated away as an endogeneity problem.
Further, the analysis above regards the observed coinvestment connections as all that is
and all that matters in this empirical setting, but personal and informal links could also
be present and play important roles. This consideration introduces a further source of en-
dogeneity that cannot be accounted for in the Heckman-corrected model, and motivates
a model of endogenous social network formation.

The setup of the model is similar except that it is a two-period game now. In the
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first period, VCs establish connections in rational expectations of the impact on their
effectiveness. In the second period, agents choose their effort levels. The equilibrium
levels of effectiveness are then realized. By backward induction, VCs would optimally
choose their connections in the first period taking into consideration their impacts on
their equilibrium effectiveness. The equilibrium is defined by the pure strategy (gi, li),
where gi = (gi1, · · · , gin) maps the type of the VC to a vector of connection intensities,
and li maps the type and the networks to the effort level.

The final piece of the setup is the cost of establishing social link C(gij, θij) in the first
period on VC i’s part. It is increasing in the strength of connection gij and decreasing in
the compatibility θij between i and j (to be specified below). The following parametric
form is assumed and the parameter λ would have a convenient interpretation to be made
clear shortly. For now, λ is a parameter that captures the curvature of the cost function
and therefore measures the responsiveness of the i’s choice of connection intensity to its
peers’ performance.

C(gij, θij) =
λ

1 + λ

(
gij
θij

)1+ 1
λ

(8)

Given the setup, Battaglini, Patacchini, and Rainone (2021) define the following equi-
librium concept.

Definition 1. Given the game described above, (l,E,G) is a network competitive equilibrium if
1. gi = (gi1, · · · , gin) is optimal at t = 1 given E (agents are price-taking),
2. li is optimal at t = 2 given E and G, and
3. E satisfies the production function given l and G (price must clear the market).

Now, under some assumptions on the parameter space, the game can be solved by
backward induction with a pure-strategy equilibrium. Further, under regularity condi-
tions, the solution is interior and unique.

Proposition 2. A network competitive equilibrium exists and is characterized by E with

Ei = ϕ
∑
j

(θijEj)
1+λ + εi (9)
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for all i, where ϕ is a function of ρ, α, and λ.3 The equilibrium level of intensities G are given by

gij = θ1+λ
ij (αδEj)

λ (10)

for all i 6= j. Under regularity conditions, the equilibrium is unique.

That is, the equilibrium effectivenesses are characterized by a system of nonlinear
equations. Note ϕ measures the network spillover. Comparing system (9) with the base-
line exogenous system (4), we see that the effectiveness are a modified version of the
alpha centrality with the added nonlinear component λ on the index. The reason is that
since the networks gij are endogenous, agents also choose their equilibrium connection
intensity gij proportional to Eλ

j as in equation (10). Hence, Ei is a function of E1+λ
j in

equilibrium.

Note further that the elasticity of a link gij with respect to the Ej is precisely equal to
λ given the parametric assumption above.4 This lends to a convenient interpretation as
we can simultaneously estimate the effect of connections on effectiveness and how effec-
tiveness induces connection formation. Observe that if λ = 0, then equations (9) and (10)
collapse into equation (4), the baseline network model. The parameter λ, therefore, mea-
sures the extent to which the endogenous network formation model fits the data better
than the baseline network model and how much active networking happens in the VC
industry.

For econometric specification, I assume that the individual heterogeneity is a linear
function of characteristics. Then the equilibrium is characterized by the following system
which is the main estimation equation of the third model.

Ei = ϕ
∑
j

(θijEj)
1+λ +Xiβ + εi (11)

Lastly, θij , the compatibility between VCs i and j, is modelled as Bernoulli random real-
ization from a logistic function of χij , a measure of connectivity between i and j, which

3Detailed proofs are in the appendix. The parameter ϕ = αλδ1+λ, where δ = ρ
1
α (1−α)

1−α
α is a interme-

diate parameter in the model identical to that in equation (4).
4The elasticity of a link gij with respect to the effectiveness of j is

εgij ,Ej =
∂gij
∂Ej

Ej
gij

= θ1+λij (αδEj)
λ−1αδ

Ej
gij

= λ
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in turn depends on past connections and the distance between i and j in terms of their
characteristics. That is,

P(θij = 1|χij) =
eχij

1 + eχij
(12)

with χij = γ0 + γ1hij +
∑
l

γl+1d(X l
i , X

l
j)

I make a final note on the difference between equation (12) and the link formation model
in the first-step of Heckman-corrected network model in equation (6). In equation (12),
the outcome variable is θij , a measure of compatibility, whereas in the Heckman estima-
tion, the outcome variable is gij , the connection itself. The similarity in form is deceiving:
It should be clear that social networks gij are endogenously determined and recovered
from the data in this model in equation (10), rather than the observed coinvestment net-
works. As we will see, there are both similarities and differences between the observed
coinvestment networks and the recovered social networks.

3.4 Estimation Methods

I now briefly describe the estimation strategy. The main estimation equations are the
baseline network model (5), the Heckman-corrected model (7), and the endogenous net-
work formation model (11). Although equations (5) and (7) are linear in E, ordinary least
squares (OLS) estimation is not feasible because the variable E appears on both sides of
the equation. The simultaneity of the autoregressive model would render an OLS esti-
mation inconsistent. Instead, I will estimate equations (5) and (7) using nonlinear least
squares (NLLS). Standard errors are bootstrapped with 500 replications.5

The endogenous network formation model (11) is highly nonlinear and is estimated
using Bayesian methods. Specifically, I use the Approximate Bayesian Computation (ABC)
(see Marjoram et al. 2003), a technique modified from the Metropolis-Hastings algorithm
(see Metropolis et al. 1953; Hastings 1970). See section 4.2 in Battaglini, Patacchini, and
Rainone (2021) as well as the appendix for more details on the procedure. I provide a
loose description of the algorithm here. Starting from an initial value of the parameters
ω, the algorithm proposes a candidate new parameter ω′ according to some pre-specified
transition kernel. If the proposed parameter ω′ explains the observed data E well accord-
ing to the equilibrium condition (11) and better than the current parameter ω does, then

5The standard errors reported in this draft are asymptotic standard errors.
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the algorithm moves to the proposed parameter ω′. The algorithm generates a Markov
chain with a limiting stationary distribution, which, under the assumption that the model
is correctly specified, coincides with the true conditional distribution of the parameter
P (ω|E), the object of our interest.

4 Results6

4.1 Baseline Model Results

I begin the analysis by discussing the estimation results from the baseline network model.
Recall that the baseline model relates VC performance on networks directly without ex-
plicitly accounting for endogeneity issues or the underlying social networks. Table 4 re-
ports these results. As a benchmark, Column (1) reports the OLS regression of exit rate
on VC characteristics directly, a naive model that disregards the effect of networks. Un-
surprisingly, the exit rates is strongly predicted by the number of the startups that the VC
supports. This is consistent with the literature that bigger VCs with larger funds are gen-
erally associated with better performances. Additionally, specialization in the healthcare
and information technology industries are also associated with stronger performances,
possibly due to the burgeoning of these industries in the past few decades.

Columns (2) through (4) present results from the baseline estimation model in equa-
tion (5). Column (2) uses the observed coinvestment connections G as the networks.
Columns (3) and (4) use the professional and alumni connections Hp and Ha as the net-
works. Observed that the coefficient on the key parameter δ is positive and significant in
all three models, indicating the presence of network spillover effects. There are several
ways to interpret this result. At the intensive margin, if the exit rate of a VC’s coinvestor
increases by 10 percentage point, then the VC’s own exit rate would increase by 0.1 per-
centage point, (assuming the equilibrium effects of these changes are negligible.) At the
extensive margin, if the VC makes a new connection with an exit rate of, say 10%, then
the VC’s own exit rate would also increase by 0.1 percentage point. Compare this with
the reduced-form result in table 3 relating exit rates to the degree centrality, where an
additional coinvestor raises the exit rate by 0.2 percentage point. The magnitudes of the
structural estimates are reasonable. Additionally, they allow a richer interpretation in
terms of both the quantity and quality of social connections compared to the reduced-

6Note that post-estimation statistics such as the R2 are not reported in this draft.
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Table 4: Estimation results of the baseline network model

Dependent variable:
Exit rate

(1) (2) (3) (4)
No

networks
Coinvestment

networks
Professional

networks
Alumni

networks

δ 0.00934∗∗∗ 0.00127∗∗ 0.0107∗∗∗

(0.00126) (0.000548) (0.000605)

No. startups 0.000997∗∗∗ -0.00098∗∗∗ 0.000799∗∗∗ -0.000469∗

(0.000131) (0.000323) (0.000159) (0.000269)

Percent business & finance 0.306∗∗∗ 0.265∗∗∗ 0.295∗∗∗ 0.0694
(0.0927) (0.0882) (0.0925) (0.166)

Percent consumer G&S 0.19∗ 0.151 0.179∗ -0.0839
(0.0993) (0.0945) (0.0991) (0.179)

Percent healthcare 0.425∗∗∗ 0.388∗∗∗ 0.415∗∗∗ 0.14
(0.0898) (0.0845) (0.0896) (0.162)

Percent information tech 0.405∗∗∗ 0.354∗∗∗ 0.392∗∗∗ 0.0845
(0.0918) (0.0873) (0.0917) (0.165)

Percent female 0.0143 0.0198 0.0097 -0.00277
(0.0388) (0.0374) (0.0387) (0.0695)

Percent Asian -0.0163 -0.0212 -0.0195 0.049
(0.0335) (0.032) (0.0334) (0.06)

Constant 0.047 0.037 0.0444 -0.0701
(0.0826) (0.0782) (0.0823) (0.148)

Observations 670 670 670 670

Notes: Column (1) reports the OLS of exit rate on VC characteristics. Columns (2) through (4) report the
estimates of equation (5), with the coinvestment networks, professional networks, and alumni networks,
respectively. ∗, ∗∗, and ∗∗∗ indicates statistical significance at the 10, 5, and 1% levels.

form estimates.

4.2 Heckman-Corrected Model Results

First step: link formation

For the Heckman-corrected network model, I begin the analysis by showing that the past
networks are relevant to VC coinvestments. Table 5 presents the OLS estimation results
of the first step coinvestment network formation in equation (6). Columns (1) and (2)
use binary variables in the networks, whereas columns (3) and (4) use the raw number of
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connections. Perhaps unsurprisingly, there is strong evidence of homophilly as all coeffi-
cients on the distance between VC characteristics are negative and statistically significant.
VCs are more likely to be coinvestors if they share similar characteristics including their
fund size, industry of specialization, and demographics. In particular, VCs with a higher
representation of female or Asian partners are more likely to syndicate with their alike,
suggesting either that underrepresented groups prefer and trust their own group more
in coinvestment decision, or that the VC industry is indeed an old boys’ club difficult for
newcomers to navigate.

For the purpose of this paper, the more relevant result is the coefficient on professional
and alumni networks. Note that both coefficients are positive and statistically significant.
In columns (1) and (2), two VCs having alumni connections increases the probability of
coinvestment by 5 percentage point, and having professional connections increases the
probability of coinvestment by 13 percentage point. Past professional connections are
more than twice as impactful as alumni connections are in inducing coinvestments. This
is true in the specifications using raw number of connection counts. In columns (3) and
(4), have one additional professional connection between two VCs leads to an increase
of 0.03 coinvestments, whereas an additional alumni connection increase the number of
coinvestments by 0.015.

Second step: networks controlling for endogeneity

Table 6 presents estimation results of the second step of the Heckman-corrected network
model. As two benchmarks, column (1) reports the OLS estimates of exit rate on VC
characteristics directly, while column (2) reports results from the baseline network model
using the coinvestment connections in table 4. Columns (3) to (6) report the estimates
of equation (7) after controlling for endogeneity using the additional bias term gathered
from the first-step estimation. The estimate of the network spillover effect δ is positive
and statistically significant across specifications, indicating the presence of network ex-
ternalities. The estimates are quantitatively similar to the results in the baseline model.
Furthermore, the estimates on the unobserved individual-level factors ξ are not statisti-
cally significant. This result suggests that the professional and alumni networks do not
contain additional information not already captured by the coinvestment networks.

4.3 Endogenous Network Formation Model Result

Lastly, I discuss the estimation results of the endogenous network formation model. Ta-
bles 7 and 8 present the median value of the posterior distributions of the estimation of
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Table 5: First step in the Heckman-corrected model: coinvestment network formation

Dependent variable:
If coinvest No. coinvestments

(1) (2) (3) (4)

Professional connections 0.131∗∗∗ 0.0278∗∗∗

(0.00125) (0.000582)

Alumni connections 0.0461∗∗∗ 0.0154∗∗∗

(0.00065) (0.000214)

No. startups (absolute distance) -0.00367∗∗ -0.00349∗ -0.013 -0.011
(0.00178) (0.00179) (0.0134) (0.0134)

Percent business & finance (absolute distance) -0.0124∗∗∗ -0.0128∗∗∗ -0.0595∗∗∗ -0.0556∗∗∗

(0.00106) (0.00106) (0.00799) (0.00796)

Percent consumer G&S (absolute distance) -0.0189∗∗∗ -0.019∗∗∗ -0.083∗∗∗ -0.0864∗∗∗

(0.000877) (0.000883) (0.00662) (0.0066)

Percent healthcare (absolute distance) -0.0251∗∗∗ -0.0242∗∗∗ -0.107∗∗∗ -0.0994∗∗∗

(0.000782) (0.000788) (0.0059) (0.00588)

Percent information tech (absolute distance) -0.0102∗∗∗ -0.011∗∗∗ -0.0416∗∗∗ -0.041∗∗∗

(0.0013) (0.00131) (0.00981) (0.00978)

Percent female (absolute distance) -0.0182∗∗∗ -0.0169∗∗∗ -0.129∗∗∗ -0.113∗∗∗

(0.000565) (0.000575) (0.00425) (0.00424)

Percent Asian (absolute distance) -0.015∗∗∗ -0.0156∗∗∗ -0.108∗∗∗ -0.0946∗∗∗

(0.000572) (0.000578) (0.00429) (0.00429)

Constant 0.052∗∗∗ 0.0461∗∗∗ 0.268∗∗∗ 0.241∗∗∗

(0.000456) (0.000517) (0.00332) (0.00334)

Observations 448900 448900 448900 448900

Notes: Results from the estimation of equation (6). Columns (1) and (2) uses the binary outcome of coin-
vestment as the outcome variable. Columns (3) and (4) uses the number of coinvestments as the outcome
variable. ∗, ∗∗, and ∗∗∗ indicates statistical significance at the 10, 5, and 1% levels.

the endogenous model described in section 3.2. Table 7 presents the the median values
of the posterior distributions of parameters ϕ, ρ, α, λ, and β of the network competitive
equilibrium characterized by equation (11). Table 8 shows the median values of the poste-
rior distributions of parameters γ in the first-stage network formation model in equation
(12). The tables also report in brackets the empirical p-value of zero on the estimated pos-
terior distribution (as opposed to the standard error that is typically reported). Statistical
significance correspond to values near 1 or 0: If the p-value is equal to 1, the support of
the empirical posterior distribution is greater than zero, whereas if the p-value is equal to
0, the support of the empirical posterior distribution is less than zero.

Before discussing the results, it is important to remember that both VC performance
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Table 6: Estimation results of the Heckman-correct network model

Dependent variable:

Exit rate

(1) (2) (3) (4) (5) (6)
No

networks
Baseline
model

Heckman
(profes-
sional,
binary)

Heckman
(alumni,
binary)

Heckman
(profes-
sional,
count)

Heckman
(alumni,
count)

δ 0.00934∗∗∗ 0.00934∗∗∗ 0.00934∗∗∗ 0.00742∗∗∗ 0.00744∗∗∗

(0.00126) (0.00126) (0.00126) (0.000394) (0.000394)

No. startups 0.000997∗∗∗ -0.00098∗∗∗ -
0.000979∗∗∗

-0.00098∗∗∗ -0.00466∗∗∗ -0.00465∗∗∗

(0.000131) (0.000323) (0.000323) (0.000323) (0.000263) (0.000262)

Percent business & finance 0.306∗∗∗ 0.265∗∗∗ 0.265∗∗∗ 0.266∗∗∗ 0.328∗∗∗ 0.332∗∗∗

(0.0927) (0.0882) (0.0884) (0.0885) (0.115) (0.115)

Percent consumer G&S 0.19∗ 0.151 0.15 0.152 0.307∗∗ 0.309∗∗

(0.0993) (0.0945) (0.0947) (0.0948) (0.123) (0.123)
Percent healthcare 0.425∗∗∗ 0.388∗∗∗ 0.388∗∗∗ 0.389∗∗∗ 0.155 0.159

(0.0898) (0.0845) (0.0847) (0.0847) (0.108) (0.108)

Percent information tech 0.405∗∗∗ 0.354∗∗∗ 0.353∗∗∗ 0.355∗∗∗ 0.361∗∗∗ 0.365∗∗∗

(0.0918) (0.0873) (0.0877) (0.0877) (0.113) (0.114)

Percent female 0.0143 0.0198 0.0198 0.0198 0.0754 0.0748
(0.0388) (0.0374) (0.0374) (0.0374) (0.0491) (0.0491)

Percent Asian -0.0163 -0.0212 -0.0211 -0.0212 0.0691∗ 0.0689∗

(0.0335) (0.032) (0.032) (0.032) (0.0405) (0.0406)

Unobservables (ξ) -3.55e-05 5.63e-05 -9.85e-05 -8.77e-05
(0.000367) (0.000357) (6.61e-05) (6.74e-05)

Constant 0.047 0.037 0.0376 0.0361 0.0934 0.09
(0.0826) (0.0782) (0.0785) (0.0785) (0.103) (0.103)

Observations 670 670 670 670 670 670

Notes: Column (1) reports the OLS of exit rate on VC characteristics. Column (2) reports the estimates of
equation (5). Columns (3) to (6) report the estimates of equation (7), with the professional networks and
alumni networks, either binary or raw count, respectively. ∗, ∗∗, and ∗∗∗ indicates statistical significance at
the 10, 5, and 1% levels.

and networks are equilibrium outcomes, so the following interpretation of the parame-
ters assumes that any small changes have little cascading impact on the entire networks.
I begin the analysis by discussing ϕ in the context of equation (11). It is positive and
statistically significant, indicating the presence of social spillover. The magnitude of ϕ,
however, is not easy to interpret because of the nonlinear term E1+λ

j involved. As an ex-
ample, if the exit rate of a VC’s coinvestor increases from 10% to 20%, after accounting
for endogenous network formation, the VC’s own performance would increases by 0.09
percentage point. If the VC makes a new connection with a 10% exit rate, its own exit rate
would rise by 0.08 percentage point.
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The parameters α and λ are easier to interpret given the structure of the model. Recall
that α is the elasticity of effectiveness of social connectedness with respect to the effec-
tiveness of the others. A one percent increase in the social connectedness, measured by
the weighted sum of the effectiveness of his peers of i,

∑
gijEj , either at the intensive or

the extensive margin, induces a 0.24 percentage point increase in the effectiveness Ei. On
the other hand, λ is the elasticity of connection intensity gij with respect to effectiveness
of its peers Ej . That is, a one percent increase in Ej leads to a marginal increase in gij by
0.74 percentage point, assuming that the impact on others are negligible in equilibrium.
This latter indicates that VCs do strongly respond to the effectiveness of their peers and
actively seek out better connections.
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Table 7: Results from the endogenous network model

Dependent variable:

Exit rate

ϕ (Social spillover)† 0.0002∗∗∗

[1.0000]

ρ (Cobb-Douglas coefficient) 0.2700∗∗∗

[1.0000]

α (Elasticity of connection impact)† 0.2403∗∗∗

[1.0000]

λ (Elasticity of network formation)† 0.7411∗∗∗

[1.0000]

No. startups 0.0010∗∗∗

[1.0000]

Percent business & finance 0.3395∗∗∗

[1.0000]

Percent consumer G&S 0.2165∗∗∗

[1.0000]

Percent healthcare 0.4897∗∗∗

[1.0000]

Percent information tech 0.4705∗∗∗

[1.0000]

Percent female 0.0148∗∗∗

[1.0000]

Percent Asian -0.0232∗∗∗

[0.0000]

Pseudo-R2 0.8352
Penalized pseudo-R2 0.8341
MSE 0.1648
MASD 0.4320
Observations 670

Notes: †α is the elasticity of performanceEi with respect to the social connections
∑
gijEj . λ is the elasticity

of link gij with respect to the performance of j, Ej . ϕ is calculated based on the estimates of ρ, α, and λ.
Estimates of parameters in equation (11) are reported in column (1). The median of the posterior distribu-
tion estimated with the ABC algorithm is reported for each parameter. The empirical p-value of zero on the
estimated posterior is reported in the brackets. p-value is equal to 1 if the support of the empirical poste-
rior distribution is greater than zero, whereas p-value is equal to 0 if the support of the empirical posterior
distribution is less than zero. ∗, ∗∗, and ∗∗∗ indicates statistical significance at the 10, 5, and 1% levels based
on empirical p-values.
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Table 8 shows characteristics that matter for social connections in the VC industry.
Again, I find strong evidence of homophilly, that VCs display strong preferences for peers
with similar characteristics in terms of demographics and industry of specialization. One
unexpected result is that the coefficient on distance between the number of startups is
positive, suggesting that VCs could in fact prefer to interact with those with different
fund sizes. A possible explanation is that VCs might attempt to reduce their risk expo-
sure by interacting with others of different characteristics, therefore receiving valuable
information otherwise not available to them. Big and small VCs could be complementary
in their expertise, skills, and contacts, so having personal ties with VCs on the other end
of the spectrum expands one’s own information set.

For our purpose, the most relevant result is the coefficient on past connections, and
it is indeed positive and significant. (The magnitude is not easy to interpret because of
the parametric form in equation (12).) Recall that this set of parameters are recovered
from VC performances and embedded in the structural model of social networks rather
than the observed coinvestment networks, so it is quite remarkable that they confirm our
intuition. Relying on past connections and VC characteristics alone, the model identifies
the effect of social networks on VC performances without referencing coinvestment net-
works at all. The social networks recovered from the model, in fact, are not the same as
the coinvestment networks. This is a direction that I intend to further pursue later on.

Lastly, I compare the endogenous network formation model with two benchmarks.
The first is the standard model without networks that relates exit rates to VC character-
istics, a model similar to a direct OLS estimation. In terms of implementation, this is
equivalence to imposing ρ = 0 in the production function (3) and consequently ϕ = 0

in equation (11). The second benchmark is the case where performance depends on net-
works but the networks are exogenous, i.e. VCs do not endogenously choose their con-
nections. This is equivalent to imposing the elasticity of network formation λ = 0. Then
gij is identical to θij in equation (10) and the system (11) is reduced to the baseline exoge-
nous network model in equation (5). Table 9 columns (1) and (2) report the results from
the two benchmark estimations. Note that the estimates are different from the baseline
estimation results because the underlying network is still recovered from the data rather
than imposed as the coinvestment networks.

For future work, I intend to compare if the endogenous network model produce better
fit than the exogenous version. To complete the analysis, I would also estimate the model
using the professional and alumni networks as a proxy for social connections following
the baseline and Heckman-corrected network models. These two are not degenerate ver-
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Table 8: Results of link formation in the endogenous network model

Dependent variable:

Compatibility

Professional connection 1.3400∗∗∗

[1.0000]

No. startups (absolute distance) 0.0039∗∗∗

[1.0000]

Percent business & finance (absolute distance) -4.1258∗∗∗

[0.0000]

Percent consumer G&S (absolute distance) -3.1104∗∗∗

[0.0000]

Percent healthcare (absolute distance) -0.8625∗∗∗

[0.0000]

Percent information tech (absolute distance) -1.9955∗∗∗

[0.0000]

Percent female (absolute distance) -0.1731∗∗∗

[0.0000]

Percent Asian (absolute distance) -0.3480∗∗∗

[0.0000]

Constant -1.8462∗∗∗

[0.0000]

Observations 448,900

Notes: Estimates of parameters in equation (12) are reported in column (1). The median of the posterior
distribution estimated with the ABC algorithm is reported for each parameter. The empirical p-value of
zero on the estimated posterior is reported in the brackets. p-value is equal to 1 if the support of the
empirical posterior distribution is greater than zero, whereas p-value is equal to 0 if the support of the
empirical posterior distribution is less than zero. ∗, ∗∗, and ∗∗∗ indicates statistical significance at the 10, 5,
and 1% levels based on empirical p-values.

sions of the endogenous model, but can be seen as alternative ways to control for the
endogeneity problems.

Finally, we compare the exogenous versus the endogenous approaches. Results are
reported in table 10.

5 Conclusion
The VC industry is characterized by risk, uncertainty, and information asymmetry. Net-
works prove to be a solution to VC’s information problems by facilitating the exchange
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Table 9: Comparison between the main estimation and two benchmarks

Dependent variable:

Exit rate

(1) (2) (3)
No networks Exogenous networks Endogenous networks

ϕ (Social spillover)† - 0.0012∗∗∗ 0.0002∗∗∗

[1.0000] [1.0000]

ρ (Cobb-Douglas coefficient) - 0.1153∗∗∗ 0.2700∗∗∗

[1.0000] [1.0000]

α (Elasticity of networks)† - 0.0555∗∗∗ 0.2403∗∗∗

[1.0000] [1.0000]

λ (Elasticity of network formation)† - - 0.7411∗∗∗

[1.0000]

No. startups 0.0010∗∗∗ 0.0011∗∗∗ 0.0010∗∗∗

[1.0000] [1.0000] [1.0000]

Percent business & finance 0.3539∗∗∗ 0.3300∗∗∗ 0.3395∗∗∗

[1.0000] [1.0000] [1.0000]

Percent consumer G&S 0.2403∗∗∗ 0.2298∗∗∗ 0.2165∗∗∗

[1.0000] [1.0000] [1.0000]

Percent healthcare 0.4730∗∗∗ 0.4323∗∗∗ 0.4897∗∗∗

[1.0000] [1.0000] [1.0000]

Percent information tech 0.4546∗∗∗ 0.4581∗∗∗ 0.4705∗∗∗

[1.0000] [1.0000] [1.0000]

Percent female 0.0154 0.0108∗∗∗ 0.0148∗∗∗

[0.6571] [1.0000] [1.0000]

Percent Asian -0.0158 -0.0172∗∗∗ -0.0232∗∗∗

[0.3185] [0.0000] [0.0000]

Observations

Notes: †α is the elasticity of performanceEi with respect to the social connections
∑
gijEj . λ is the elasticity

of link gij with respect to the performance of j, Ej . ϕ is calculated based on the estimates of ρ, α, and
λ. Estimates of parameters in equation (9) are reported in column (3). Column (1) reports the estimates
with the constraint λ = 0. Column (2) reports the estimates with the constraint ρ = 0. The median of the
posterior distribution estimated with the ABC algorithm is reported for each parameter. The empirical
p-value of zero on the estimated posterior is reported in the brackets. p-value is equal to 1 if the support of
the empirical posterior distribution is greater than zero, whereas p-value is equal to 0 if the support of the
empirical posterior distribution is less than zero. ∗, ∗∗, and ∗∗∗ indicates statistical significance at the 10, 5,
and 1% levels based on empirical p-values.

and flow of information. The study of VC networks, however, is plagued by endogeneity
issues. In this paper, I have presented a structural model to address these problems. To
the best of my knowledge, this is the first study that examines VC networks from a struc-
tural perspective. I find that better-connected VCs indeed realize better performances,
as measured by the proportion of portfolio investments that successfully exited through
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Table 10: Comparison between the endogenous model and the exogenous model

Dependent variable:

Exit rate

(1) (2) (3) (4)
SAR Two-step I Two-step II Endogenous

ϕ (Social spillover)† 0.5052∗∗∗ 0.0015∗∗∗

[1.0000] [1.0000]

ρ (Cobb-Douglas coefficient) 0.5057∗∗∗ 0.4790∗∗∗

[1.0000] [1.0000]

α (Elasticity of networks)† 0.9999∗∗∗ 0.1430∗∗∗

[1.0000] [1.0000]

λ (Elasticity of network formation)† - - - 0.0896∗∗∗

[1.0000]

Number of rounds -3.5286∗∗∗ -3.4840∗∗∗ -2.0082∗∗∗

[0.0003] [0.0003] [0.0000]

Number of startups 1.9522∗∗ 1.9172∗∗ 1.3973∗∗∗

[0.9806] [0.9780] [1.0000]

Experience (year) 1.3841∗∗∗ 1.3828∗∗∗ 0.6822∗∗∗

[1.0000] [1.0000] [1.0000]

Pseudo-R2 0.7918 0.7944 0.8352
Penalized pseudo-R2 0.7883 0.7911 0.8341
MSE 0.2082 0.2056 0.1648
MASD 0.2564 0.2576 0.4320
Observations

Notes: †α is the elasticity of performanceEi with respect to the social connections
∑
gijEj . λ is the elasticity

of link gij with respect to the performance of j, Ej . ϕ is calculated based on the estimates of ρ, α, and λ.
Estimates of parameters in equation (9) are reported in column (4). In columns (1) to (3), λ = 0. In column
(1), Θ = H the alumni network which reduces the model to equation (5). In column (2), Θ = G and ξ is
added as a regressor as in equation (7). In column (3), Θ = Ĝwhere Ĝ is derived based on the dyadic model
in equation (6), which makes the model equivalent to model (??). The median of the posterior distribution
estimated with the ABC algorithm is reported for each parameter. The empirical p-value of zero on the
estimated posterior is reported in the brackets. p-value is equal to 1 if the support of the empirical posterior
distribution is greater than zero, whereas p-value is equal to 0 if the support of the empirical posterior
distribution is less than zero. ∗, ∗∗, and ∗∗∗ indicates statistical significance at the 10, 5, and 1% levels based
on empirical p-values.

an IPO or an acquisition by another company. Furthermore, I find strong evidence for
the presence of social networks that explain VC performances even without referencing
coinvestment connections. My study suggests that both coinvestment and informal and
personal ties play important roles in the industry.
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Three methodological contributions are at the center of my study. First, I bridge the
gap between information, network, and performance by introducing a parsimonious
model with a simple production function. This micro-foundation grounds my analysis
and subsumes many theories in explaining the role and goal of VCs as important finan-
cial intermediaries. Second, I exploit past professional and alumni networks as possible
sources of exogenous variation in the model to partially address the endogeneity issues.
The results demonstrate that the VC industry is in many ways an exclusive club with
substantial barriers to entry. Third, I adopt an endogenous network formation model
that recovers the underlying social networks from VC performances alone. I would high-
light that this last method is the pièce de résistance of this study because social networks
have not been closely examined in the literature. The intuition is performances, past
connections, and characteristics are sufficient information to infer the structure of social
networks. The results demonstrate that the recovered social networks share many simi-
larities with the coinvestment networks, but also contain many interesting differences.
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Appendix A Details of the Structural Model

A.1 Baseline network model

See Battaglini, Leone Sciabolazza, and Patacchini (2020). Given the production function

Ei = ρsαi l
1−α
i + εi (A.1)

where si =
∑

j∈N gijEj measures the social connectedness of i. The following conditions
are imposed on the parameter space. The effort l ∈ [0, l̄] with l̄ > 0. The cost of effort is
simply normalized as li. The social link between i and j intensity gij ∈ [0, ḡ] with ḡ > 0.
Following convention in the literature, self-connection is assumed to be zero gii = 0.
Individual heterogeneity εi ∈ [

¯
ε, ε̄] with

¯
ε > 0 and ε̄ ∈ (0, 1). Now assume that ρḡαl̄1−α+ε̄ <

1, a sufficient condition that guarantees Ei ∈ (0, 1).

The agent chooses l to maximize his effectiveness net of effort cost ρsαi l
1−α
i +εi− li. The

first-order condition yields the optimal effort level l∗i = (ρ(1− α))
1
α si. Plugging this back

into the production function gives

E∗i = δ
∑
j∈N

gijE
∗
j + εi (A.2)

where δ = ρ
1
α (1− α)

1−α
α . Further, since the system is linear, it can be inverted and solved

by a unique equilibrium.

E(G, ε; δ) = [I− δG]−1ε (A.3)

A.2 Heckman-Corrected Network Model

The first step in the Heckman-corrected network model is a link formation model.

gij = γ0 + γ1hij +
∑
l

δl+1d(X l
i , X

l
j) + ηij (A.4)

where h denotes alumni or professional connection, and X1, · · · , XL is a vector of VC
characteristics.

Further assume the covariance matrix of (ε, η) has the following properties. ε = (ε1, · · · , εn)′

and ηi = (ηi1, · · · , ηin)′ are jointly normal with E(ε2i ) = σ2
ε , E(εiηij) = σεη for all i 6= j,

E(η2
ij) = σ2

η , and E(ηijηik) = 0 for all j 6= k. Then it can be shown that the expected value
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of the error term conditional on the link formation is E(εi|ηi1, · · · , ηin) = ψ
∑

j 6=i ηij , where
ψ = σεη/σ

2
η . The model after correction is given by

E = δGE + Xβ + ψξ + ε (A.5)

where ξi =
∑

j 6=i ηij .

A.3 Exogenous Network Formation Model

See Battaglini, Patacchini, and Rainone (2021). The cost of establishing social link is given
by the following. In this model, the cost Cij is assumed to be born by i only. (Conversely,
Cji is born by j only.) This assumption is not important and can be generalized easily.

C(gij, θij) =
λ

1 + λ

(
gij
θij

)1+ 1
λ

(A.6)

Another important assumption is that l̄ >
(

(1−α)ρ
c

) 1
α

. This guarantees interior solu-
tions of li < l̄.

Consider a two-period game. In period 1, agents choose connections. In period 2,
agents choose effort levels. Type ωi = (εi, (θik)k,Mi). Denote Ω the space of types. We
solve for a pure strategy (g, l) where g : Ω → [0, ḡ]n−1 maps the VC type to a vector of
connection intensities and l : Ω×G→ [0, l̄] maps type and networks to the effort level.

We solve the game by backward induction. At t = 2, the agents choose l to maximize
effectiveness net of effort cost ρsαi l

1−α
i + εi − li. This is the same as the baseline network

model above. At t = 1, agents form networks. First, observe that the continuation value
is (ignoring discounting)

Ei(G, ε)− li(G, ε) = αδ
∑

gijEj(G, ε) + εi (A.7)

The agent maximizes the continuation value net of the costs of connection formation

n∑
j=1

(
αδgijEj(G, ε)−

λ

1 + λ

(
gij
θij

)1+ 1
λ

)
(A.8)

Equations (A.2) and (A.8) characterize the network competitive equilibrium. The equilib-
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rium exists and is characterized by E∗ and G∗ where

E∗i = δ
∑
j

g∗ijE
∗
j + εi (A.9)

g∗i ≤ θ1+λ
ij (αδE∗j )

λ (A.10)

If an interior solution exist for all i, j, then the second equation, which is based on the
first-order condition of equation (A.8), is binding and enables further simplification.

E∗i = ϕ
∑
j

(θijE
∗
j )

1+λ + εi (A.11)

where ϕ = αλδ1+λ. That is, the equilibrium effectiveness are characterized by a system of
nonlinear equations.

Note further that the elasticity of a link gij with respect to the effectiveness of j, Ej is
precisely λ

εgij ,Ej =
∂gij
∂Ej

Ej
gij

= θ1+λ
ij (αδEj)

λ−1αδ
Ej
gij

= λ (A.12)

Lastly, assume that ḡ > (αδ)λθ̄1+λ, where θ̄ = max θij . A sufficient condition for unique

equilibrium is that δ is sufficiently small. If δ ≤ 1
θ̄

(
1

(1+λ)αλm̄

) 1
1+λ

, then the equilibrium is
unique.
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